// @(#)root/quadp:$Name: $:$Id: TQpLinSolverBase.cxx,v 1.2 2004/05/24 12:45:40 brun Exp $
// Author: Eddy Offermann May 2004
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
/*************************************************************************
* Parts of this file are copied from the OOQP distribution and *
* are subject to the following license: *
* *
* COPYRIGHT 2001 UNIVERSITY OF CHICAGO *
* *
* The copyright holder hereby grants you royalty-free rights to use, *
* reproduce, prepare derivative works, and to redistribute this software*
* to others, provided that any changes are clearly documented. This *
* software was authored by: *
* *
* E. MICHAEL GERTZ gertz@mcs.anl.gov *
* Mathematics and Computer Science Division *
* Argonne National Laboratory *
* 9700 S. Cass Avenue *
* Argonne, IL 60439-4844 *
* *
* STEPHEN J. WRIGHT swright@cs.wisc.edu *
* Computer Sciences Department *
* University of Wisconsin *
* 1210 West Dayton Street *
* Madison, WI 53706 FAX: (608)262-9777 *
* *
* Any questions or comments may be directed to one of the authors. *
* *
* ARGONNE NATIONAL LABORATORY (ANL), WITH FACILITIES IN THE STATES OF *
* ILLINOIS AND IDAHO, IS OWNED BY THE UNITED STATES GOVERNMENT, AND *
* OPERATED BY THE UNIVERSITY OF CHICAGO UNDER PROVISION OF A CONTRACT *
* WITH THE DEPARTMENT OF ENERGY. *
*************************************************************************/
//////////////////////////////////////////////////////////////////////////
// //
// TQpLinSolverBase //
// //
// Implementation of main solver for linear systems //
// //
//////////////////////////////////////////////////////////////////////////
#include "Riostream.h"
#include "TQpLinSolverBase.h"
#include "TMatrixD.h"
ClassImp(TQpLinSolverBase)
//______________________________________________________________________________
TQpLinSolverBase::TQpLinSolverBase()
{
fNx = 0;
fMy = 0;
fMz = 0;
fNxup = 0;
fNxlo = 0;
fMcup = 0;
fMclo = 0;
}
//______________________________________________________________________________
TQpLinSolverBase::TQpLinSolverBase(TQpProbBase *factory,TQpDataBase *data)
{
fFactory = factory;
fNx = data->fNx;
fMy = data->fMy;
fMz = data->fMz;
fXloIndex.ResizeTo(data->fXloIndex); fXloIndex = data->fXloIndex;
fXupIndex.ResizeTo(data->fXupIndex); fXupIndex = data->fXupIndex;
fCloIndex.ResizeTo(data->fCloIndex); fCloIndex = data->fCloIndex;
fCupIndex.ResizeTo(data->fCupIndex); fCupIndex = data->fCupIndex;
fNxlo = fXloIndex.NonZeros();
fNxup = fXupIndex.NonZeros();
fMclo = fCloIndex.NonZeros();
fMcup = fCupIndex.NonZeros();
if (fNxup+fNxlo > 0) {
fDd.ResizeTo(fNx);
fDq.ResizeTo(fNx);
data->GetDiagonalOfQ(fDq);
}
fNomegaInv.ResizeTo(fMz);
fRhs .ResizeTo(fNx+fMy+fMz);
}
//______________________________________________________________________________
TQpLinSolverBase::TQpLinSolverBase(const TQpLinSolverBase &another) : TObject(another)
{
*this = another;
}
//______________________________________________________________________________
void TQpLinSolverBase::Factor(TQpDataBase * /* prob */,TQpVar *vars)
{
Assert(vars->ValidNonZeroPattern());
if (fNxlo+fNxup > 0) {
fDd.ResizeTo(fDq);
fDd = fDq;
}
this->ComputeDiagonals(fDd,fNomegaInv,
vars->fT,vars->fLambda,vars->fU,vars->fPi,
vars->fV,vars->fGamma,vars->fW,vars->fPhi);
if (fNxlo+fNxup > 0) this->PutXDiagonal(fDd);
fNomegaInv.Invert();
fNomegaInv *= -1.;
if (fMclo+fMcup > 0) this->PutZDiagonal(fNomegaInv);
}
//______________________________________________________________________________
void TQpLinSolverBase::ComputeDiagonals(TVectorD &dd,TVectorD &omega,
TVectorD &t, TVectorD &lambda,
TVectorD &u, TVectorD &pi,
TVectorD &v, TVectorD &gamma,
TVectorD &w, TVectorD &phi)
{
if (fNxup+fNxlo > 0) {
if (fNxlo > 0) AddElemDiv(dd,1.0,gamma,v,fXloIndex);
if (fNxup > 0) AddElemDiv(dd,1.0,phi ,w,fXupIndex);
}
omega.Zero();
if (fMclo > 0) AddElemDiv(omega,1.0,lambda,t,fCloIndex);
if (fMcup > 0) AddElemDiv(omega,1.0,pi, u,fCupIndex);
}
//______________________________________________________________________________
void TQpLinSolverBase::Solve(TQpDataBase *prob,TQpVar *vars,TQpResidual *res,TQpVar *step)
{
Assert(vars->ValidNonZeroPattern());
Assert(res ->ValidNonZeroPattern());
(step->fX).ResizeTo(res->fRQ); step->fX = res->fRQ;
if (fNxlo > 0) {
TVectorD &vInvGamma = step->fV;
vInvGamma.ResizeTo(vars->fGamma); vInvGamma = vars->fGamma;
ElementDiv(vInvGamma,vars->fV,fXloIndex);
AddElemMult(step->fX,1.0,vInvGamma,res->fRv);
AddElemDiv (step->fX,1.0,res->fRgamma,vars->fV,fXloIndex);
}
if (fNxup > 0) {
TVectorD &wInvPhi = step->fW;
wInvPhi.ResizeTo(vars->fPhi); wInvPhi = vars->fPhi;
ElementDiv(wInvPhi,vars->fW,fXupIndex);
AddElemMult(step->fX,1.0,wInvPhi,res->fRw);
AddElemDiv (step->fX,-1.0,res->fRphi,vars->fW,fXupIndex);
}
// start by partially computing step->fS
(step->fS).ResizeTo(res->fRz); step->fS = res->fRz;
if (fMclo > 0) {
TVectorD &tInvLambda = step->fT;
tInvLambda.ResizeTo(vars->fLambda); tInvLambda = vars->fLambda;
ElementDiv(tInvLambda,vars->fT,fCloIndex);
AddElemMult(step->fS,1.0,tInvLambda,res->fRt);
AddElemDiv (step->fS,1.0,res->fRlambda,vars->fT,fCloIndex);
}
if (fMcup > 0) {
TVectorD &uInvPi = step->fU;
uInvPi.ResizeTo(vars->fPi); uInvPi = vars->fPi;
ElementDiv(uInvPi,vars->fU,fCupIndex);
AddElemMult(step->fS,1.0,uInvPi,res->fRu);
AddElemDiv (step->fS,-1.0,res->fRpi,vars->fU,fCupIndex);
}
(step->fY).ResizeTo(res->fRA); step->fY = res->fRA;
(step->fZ).ResizeTo(res->fRC); step->fZ = res->fRC;
if (fMclo > 0)
this->SolveXYZS(step->fX,step->fY,step->fZ,step->fS,step->fLambda,prob);
else
this->SolveXYZS(step->fX,step->fY,step->fZ,step->fS,step->fPi,prob);
if (fMclo > 0) {
(step->fT).ResizeTo(step->fS); step->fT = step->fS;
Add(step->fT,-1.0,res->fRt);
(step->fT).SelectNonZeros(fCloIndex);
(step->fLambda).ResizeTo(res->fRlambda); step->fLambda = res->fRlambda;
AddElemMult(step->fLambda,-1.0,vars->fLambda,step->fT);
ElementDiv(step->fLambda,vars->fT,fCloIndex);
}
if (fMcup > 0) {
(step->fU).ResizeTo(res->fRu); step->fU = res->fRu;
Add(step->fU,-1.0,step->fS);
(step->fU).SelectNonZeros(fCupIndex);
(step->fPi).ResizeTo(res->fRpi); step->fPi = res->fRpi;
AddElemMult(step->fPi,-1.0,vars->fPi,step->fU);
ElementDiv(step->fPi,vars->fU,fCupIndex);
}
if (fNxlo > 0) {
(step->fV).ResizeTo(step->fX); step->fV = step->fX;
Add(step->fV,-1.0,res->fRv);
(step->fV).SelectNonZeros(fXloIndex);
(step->fGamma).ResizeTo(res->fRgamma); step->fGamma = res->fRgamma;
AddElemMult(step->fGamma,-1.0,vars->fGamma,step->fV);
ElementDiv(step->fGamma,vars->fV,fXloIndex);
}
if (fNxup > 0) {
(step->fW).ResizeTo(res->fRw); step->fW = res->fRw;
Add(step->fW,-1.0,step->fX);
(step->fW).SelectNonZeros(fXupIndex);
(step->fPhi).ResizeTo(res->fRphi); step->fPhi = res->fRphi;
AddElemMult(step->fPhi,-1.0,vars->fPhi,step->fW);
ElementDiv(step->fPhi,vars->fW,fXupIndex);
}
Assert(step->ValidNonZeroPattern());
}
//______________________________________________________________________________
void TQpLinSolverBase::SolveXYZS(TVectorD &stepx,TVectorD &stepy,
TVectorD &stepz,TVectorD &steps,
TVectorD & /* ztemp */, TQpDataBase * /* prob */ )
{
AddElemMult(stepz,-1.0,fNomegaInv,steps);
this->JoinRHS(fRhs,stepx,stepy,stepz);
this->SolveCompressed(fRhs);
this->SeparateVars(stepx,stepy,stepz,fRhs);
stepy *= -1.;
stepz *= -1.;
Add(steps,-1.0,stepz);
ElementMult(steps,fNomegaInv);
steps *= -1.;
}
//______________________________________________________________________________
void TQpLinSolverBase::JoinRHS(TVectorD &rhs_in, TVectorD &rhs1_in,
TVectorD &rhs2_in,TVectorD &rhs3_in)
{
// joinRHS has to be delegated to the factory. This is true because
// the rhs may be distributed across processors, so the factory is the
// only object that knows with certainly how to scatter the elements.
fFactory->JoinRHS(rhs_in,rhs1_in,rhs2_in,rhs3_in);
}
//______________________________________________________________________________
void TQpLinSolverBase::SeparateVars(TVectorD &x_in,TVectorD &y_in,
TVectorD &z_in,TVectorD &vars_in)
{
// separateVars has to be delegated to the factory. This is true because
// the rhs may be distributed across processors, so the factory is the
// only object that knows with certainly how to scatter the elements.
fFactory->SeparateVars(x_in,y_in,z_in,vars_in);
}
//______________________________________________________________________________
TQpLinSolverBase &TQpLinSolverBase::operator=(const TQpLinSolverBase &source)
{
if (this != &source) {
TObject::operator=(source);
fNx = source.fNx;
fMy = source.fMy;
fMz = source.fMz;
fNxup = source.fNxup;
fNxlo = source.fNxlo;
fMcup = source.fMcup;
fMclo = source.fMclo;
fNomegaInv.ResizeTo(source.fNomegaInv); fNomegaInv = source.fNomegaInv;
fRhs .ResizeTo(source.fRhs); fRhs = source.fRhs;
fDd .ResizeTo(source.fDd); fDd = source.fDd;
fDq .ResizeTo(source.fDq); fDq = source.fDq;
fXupIndex .ResizeTo(source.fXupIndex); fXupIndex = source.fXupIndex;
fCupIndex .ResizeTo(source.fCupIndex); fCupIndex = source.fCupIndex;
fXloIndex .ResizeTo(source.fXloIndex); fXloIndex = source.fXloIndex;
fCloIndex .ResizeTo(source.fCloIndex); fCloIndex = source.fCloIndex;
}
return *this;
}
ROOT page - Class index - Class Hierarchy - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.