// @(#)root/mathcore:$Name: $:$Id: EulerAngles.h,v 1.6 2006/02/06 17:22:03 moneta Exp $ // Authors: W. Brown, M. Fischler, L. Moneta 2005 /********************************************************************** * * * Copyright (c) 2005 , LCG ROOT MathLib Team * * * * * **********************************************************************/ // Header file for class EulerAngles // // Created by: Lorenzo Moneta at Tue May 10 17:55:10 2005 // // Last update: Tue May 10 17:55:10 2005 // #ifndef ROOT_Math_GenVector_EulerAngles #define ROOT_Math_GenVector_EulerAngles 1 #include "Math/GenVector/Rotation3D.h" #include "Math/GenVector/DisplacementVector3D.h" #include "Math/GenVector/PositionVector3D.h" #include "Math/GenVector/LorentzVector.h" #include "Math/GenVector/3DConversions.h" #include #include namespace ROOT { namespace Math { /** EulerAngles class describing rotation as three angles (Euler Angles). The Euler angles definition matches that of Classical Mechanics (Goldstein). It is also the same convention defined in mathworld and used in Mathematica and CLHEP. Note that the ROOT class TRotation defines a slightly different convention. @ingroup GenVector */ class EulerAngles { public: typedef double Scalar; /** Default constructor */ EulerAngles() : fPhi(0.0), fTheta(0.0), fPsi(0.0) { } /** Constructor from phi, theta and psi */ EulerAngles( Scalar phi, Scalar theta, Scalar psi ) : fPhi(phi), fTheta(theta), fPsi(psi) {Rectify();} // Added 27 Jan. 06 JMM /** Construct given a pair of pointers or iterators defining the beginning and end of an array of three Scalars, to be treated as the angles phi, theta and psi. */ template EulerAngles(IT begin, IT end) { SetComponents(begin,end); } // The compiler-generated copy ctor, copy assignment, and dtor are OK. /** Re-adjust components place angles in canonical ranges */ void Rectify(); // ======== Construction From other Rotation Forms ================== /** Construct from a rotation matrix */ explicit EulerAngles(const Rotation3D & r) {gv_detail::convert(r,*this);} /** Construct from a rotation represented by a Quaternion */ explicit EulerAngles(const Quaternion & q) {gv_detail::convert(q,*this);} /** Construct from an AxisAngle */ explicit EulerAngles(const AxisAngle & a ) { gv_detail::convert(a, *this); } /** Construct from an axial rotation */ explicit EulerAngles( RotationZ const & r ) { gv_detail::convert(r, *this); } explicit EulerAngles( RotationY const & r ) { gv_detail::convert(r, *this); } explicit EulerAngles( RotationX const & r ) { gv_detail::convert(r, *this); } /** Assign from a Rotation3D */ EulerAngles & operator=( Rotation3D const & r ) { return operator=(EulerAngles(r)); } /** Assign from an AxisAngle */ EulerAngles & operator=( AxisAngle const & a ) { return operator=(EulerAngles(a)); } /** Assign from a Quaternion */ EulerAngles & operator=( Quaternion const & q ) {return operator=(EulerAngles(q)); } /** Assign from an axial rotation */ EulerAngles & operator=( RotationZ const & r ) { return operator=(EulerAngles(r)); } EulerAngles & operator=( RotationY const & r ) { return operator=(EulerAngles(r)); } EulerAngles & operator=( RotationX const & r ) { return operator=(EulerAngles(r)); } // ======== Components ============== /** Set the three Euler angles given a pair of pointers or iterators defining the beginning and end of an array of three Scalars. */ template void SetComponents(IT begin, IT end) { assert (end==begin+3); fPhi = *begin++; fTheta = *begin++; fPsi = *begin; Rectify(); // Added 27 Jan. 06 JMM } /** Get the axis and then the angle into data specified by an iterator begin and another to the end of the desired data (4 past start). */ template void GetComponents(IT begin, IT end) const { assert (end==begin+4); *begin++ = fPhi; *begin++ = fTheta; *begin = fPsi; } /** Set the components phi, theta, psi based on three Scalars. */ void SetComponents(Scalar phi, Scalar theta, Scalar psi) { fPhi=phi; fTheta=theta; fPsi=psi; Rectify(); // Added 27 Jan. 06 JMM } /** Get the components phi, theta, psi into three Scalars. */ void GetComponents(Scalar & phi, Scalar & theta, Scalar & psi) const { phi=fPhi; theta=fTheta; psi=fPsi; } /** Set Phi Euler angle // JMM 30 Jan. 2006 */ void SetPhi(const Scalar phi) { fPhi=phi; Rectify(); } /** Return Phi Euler angle */ Scalar Phi() const { return fPhi; } /** Set Theta Euler angle // JMM 30 Jan. 2006 */ void SetTheta(const Scalar theta) { fTheta=theta; Rectify(); } /** Return Theta Euler angle */ Scalar Theta() const { return fTheta; } /** Set Psi Euler angle // JMM 30 Jan. 2006 */ void SetPsi(const Scalar psi) { fPsi=psi; Rectify(); } /** Return Psi Euler angle */ Scalar Psi() const { return fPsi; } // =========== operations ============== /** Rotation operation on a cartesian vector */ DisplacementVector3D< ROOT::Math::Cartesian3D > operator() (const DisplacementVector3D< ROOT::Math::Cartesian3D > & v) const; /** Rotation operation on a displacement vector in any coordinate system */ template DisplacementVector3D operator() (const DisplacementVector3D & v) const { DisplacementVector3D< Cartesian3D > xyz(v); DisplacementVector3D< Cartesian3D > Rxyz = operator()(xyz); return DisplacementVector3D ( Rxyz ); } /** Rotation operation on a position vector in any coordinate system */ template PositionVector3D operator() (const PositionVector3D & v) const { DisplacementVector3D< Cartesian3D > xyz(v); DisplacementVector3D< Cartesian3D > Rxyz = operator()(xyz); return PositionVector3D ( Rxyz ); } /** Rotation operation on a Lorentz vector in any 4D coordinate system */ template LorentzVector operator() (const LorentzVector & v) const { DisplacementVector3D< Cartesian3D > xyz(v.Vect()); xyz = operator()(xyz); LorentzVector< PxPyPzE4D > xyzt (xyz.X(), xyz.Y(), xyz.Z(), v.E()); return LorentzVector ( xyzt ); } /** Rotation operation on an arbitrary vector v. Preconditions: v must implement methods x(), y(), and z() and the arbitrary vector type must have a constructor taking (x,y,z) */ template ForeignVector operator() (const ForeignVector & v) const { DisplacementVector3D< Cartesian3D > xyz(v); DisplacementVector3D< Cartesian3D > Rxyz = operator()(xyz); return ForeignVector ( Rxyz.X(), Rxyz.Y(), Rxyz.Z() ); } /** Overload operator * for rotation on a vector */ template inline AVector operator* (const AVector & v) const { return operator()(v); } /** Invert a rotation in place */ void Invert() {Scalar tmp = -fPhi; fPhi = -fPsi; fTheta = -fTheta; fPsi=tmp;} /** Return inverse of a rotation */ EulerAngles Inverse() const { return EulerAngles(-fPsi, -fTheta, -fPhi); } // ========= Multi-Rotation Operations =============== /** Multiply (combine) two rotations */ EulerAngles operator * (const Rotation3D & r) const; EulerAngles operator * (const AxisAngle & a) const; EulerAngles operator * (const EulerAngles & e) const; EulerAngles operator * (const Quaternion & q) const; EulerAngles operator * (const RotationX & rx) const; EulerAngles operator * (const RotationY & ry) const; EulerAngles operator * (const RotationZ & rz) const; /** Post-Multiply (on right) by another rotation : T = T*R */ template EulerAngles & operator *= (const R & r) { return *this = (*this)*r; } /** Distance between two rotations */ template Scalar Distance ( const R & r ) {return gv_detail::dist(*this,r);} /** Equality/inequality operators */ bool operator == (const EulerAngles & rhs) { if( fPhi != rhs.fPhi ) return false; if( fTheta != rhs.fTheta ) return false; if( fPsi != rhs.fPsi ) return false; return true; } bool operator != (const EulerAngles & rhs) { return ! operator==(rhs); } private: double fPhi; double fTheta; double fPsi; static double Pi() { return 3.14159265358979323; } }; // EulerAngles /** Distance between two rotations */ template inline typename EulerAngles::Scalar Distance ( const EulerAngles& r1, const R & r2) {return gv_detail::dist(r1,r2);} /** Multiplication of an axial rotation by an AxisAngle */ EulerAngles operator* (RotationX const & r1, EulerAngles const & r2); EulerAngles operator* (RotationY const & r1, EulerAngles const & r2); EulerAngles operator* (RotationZ const & r1, EulerAngles const & r2); /** Stream Output and Input */ // TODO - I/O should be put in the manipulator form std::ostream & operator<< (std::ostream & os, const EulerAngles & e); } // namespace Math } // namespace ROOT #endif /* ROOT_Math_GenVector_EulerAngles */