// @(#)root/tmva $Id: MethodLikelihood.h,v 1.2 2006/05/23 13:03:15 brun Exp $ // Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss /********************************************************************************** * Project: TMVA - a Root-integrated toolkit for multivariate data analysis * * Package: TMVA * * Class : MethodLikelihood * * * * Description: * * Likelihood analysis ("non-parametric approach") * * Also implemented is a "diagonalized likelihood approach", * * which improves over the uncorrelated likelihood ansatz by transforming * * linearly the input variables into a diagonal space, using the square-root * * of the covariance matrix. This approach can be chosen by inserting * * the letter "D" into the option string. * * * * Authors (alphabetical): * * Andreas Hoecker - CERN, Switzerland * * Xavier Prudent - LAPP, France * * Helge Voss - MPI-KP Heidelberg, Germany * * Kai Voss - U. of Victoria, Canada * * * * Copyright (c) 2005: * * CERN, Switzerland, * * U. of Victoria, Canada, * * MPI-KP Heidelberg, Germany, * * LAPP, Annecy, France * * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted according to the terms listed in LICENSE * * (http://mva.sourceforge.net/license.txt) * * * **********************************************************************************/ #ifndef ROOT_TMVA_MethodLikelihood #define ROOT_TMVA_MethodLikelihood ////////////////////////////////////////////////////////////////////////// // // // MethodLikelihood // // // // Likelihood analysis ("non-parametric approach") // // Also implemented is a "diagonalized likelihood approach", // // which improves over the uncorrelated likelihood ansatz by // // transforming linearly the input variables into a diagonal space, // // using the square-root of the covariance matrix // // // ////////////////////////////////////////////////////////////////////////// #ifndef ROOT_TMVA_MethodBase #include "TMVA/MethodBase.h" #endif #ifndef ROOT_TMVA_PDF #include "TMVA/PDF.h" #endif #ifndef ROOT_TMVA_TMatrixD #include "TMatrixD.h" #endif class TH1D; namespace TMVA { class MethodLikelihood : public MethodBase { public: MethodLikelihood( TString jobName, vector* theVariables, TTree* theTree = 0, TString theOption = "", TDirectory* theTargetDir = 0 ); MethodLikelihood( vector *theVariables, TString theWeightFile, TDirectory* theTargetDir = NULL ); virtual ~MethodLikelihood( void ); // training method virtual void Train( void ); // write weights to file virtual void WriteWeightsToFile( void ); // read weights from file virtual void ReadWeightsFromFile( void ); // calculate the MVA value virtual Double_t GetMvaValue( Event *e ); // write method specific histos to target file virtual void WriteHistosToFile( void ) ; // additional accessor Bool_t DecorrVarSpace( void ) { return fDecorrVarSpace; } protected: private: // weight file TFile* fFin; // type of Splines used to smooth PDFs PDF::SmoothMethod fSmoothMethod; Int_t fNevt; // total number of events in sample Int_t fNsig; // number of signal events in sample Int_t fNbgd; // number of background events in sample Int_t fNsmooth; // naumber of smooth passes Double_t fEpsilon; // minimum number of likelihood (to avoid zero) TMatrixD* fSqS; // square-root matrix for signal TMatrixD* fSqB; // square-root matrix for background vector* fHistSig; // signal PDFs (histograms) vector* fHistBgd; // background PDFs (histograms) vector* fHistSig_smooth; // signal PDFs (smoothed histograms) vector* fHistBgd_smooth; // background PDFs (smoothed histograms) TList* fSigPDFHist; // list of PDF histograms (signal) TList* fBgdPDFHist; // list of PDF histograms (background) vector* fPDFSig; // list of PDFs (signal) vector* fPDFBgd; // list of PDFs (background) Int_t fNbins; // number of bins in reference histograms Int_t fAverageEvtPerBin; // average events per bin; used to calculate fNbins Bool_t fDecorrVarSpace; // flag for decorrelation method // computes square-root-matrices void GetSQRMats( void ); // default initialisation called by all constructors void InitLik( void ); ClassDef(MethodLikelihood,0) //Likelihood analysis ("non-parametric approach") }; } // namespace TMVA #endif // MethodLikelihood_H