// @(#)root/mathmore:$Name: $:$Id: Derivator.h,v 1.5 2006/12/11 15:06:37 moneta Exp $ // Authors: L. Moneta, A. Zsenei 08/2005 /********************************************************************** * * * Copyright (c) 2004 ROOT Foundation, CERN/PH-SFT * * * * This library is free software; you can redistribute it and/or * * modify it under the terms of the GNU General Public License * * as published by the Free Software Foundation; either version 2 * * of the License, or (at your option) any later version. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this library (see file COPYING); if not, write * * to the Free Software Foundation, Inc., 59 Temple Place, Suite * * 330, Boston, MA 02111-1307 USA, or contact the author. * * * **********************************************************************/ // Header file for class Derivator // // class for calculating Derivative of functions // // Created by: moneta at Sat Nov 13 14:46:00 2004 // // Last update: Sat Nov 13 14:46:00 2004 // #ifndef ROOT_Math_Derivator #define ROOT_Math_Derivator /** @defgroup Deriv Numerical Differentiation */ #ifndef ROOT_Math_IFunctionfwd #include "Math/IFunctionfwd.h" #endif #ifndef ROOT_Math_IParamFunctionfwd #include "Math/IParamFunctionfwd.h" #endif namespace ROOT { namespace Math { class GSLDerivator; /** Class for computing numerical derivative of a function. Presently this class is implemented only using the numerical derivatives algorithms provided by GSL with the implementation class ROOT::Math::GSLDerivator This class does not support copying @ingroup Deriv */ class Derivator { public: /** signature for function pointers used by GSL */ typedef double ( * GSLFuncPointer ) ( double, void * ); /** Empty Construct for a Derivator class Need to set the function afterwards with Derivator::SetFunction */ Derivator(); /** Construct using a ROOT::Math::IGenFunction interface */ explicit Derivator(const IGenFunction &f); /** Construct using a GSL function pointer type @param f : free function pointer of the GSL required type @param p : pointer to the object carrying the function state (for example the function object itself) */ explicit Derivator(const GSLFuncPointer &f, void * p = 0); /// destructor virtual ~Derivator(); // disable copying private: Derivator(const Derivator &); Derivator & operator = (const Derivator &); public: #ifdef LATER /** Template methods for generic functions Set the function f for evaluating the derivative. The function type must implement the assigment operator, <em> double operator() ( double x ) </em> */ template <class UserFunc> inline void SetFunction(const UserFunc &f) { const void * p = &f; SetFunction( &GSLFunctionAdapter<UserFunc>::F, const_cast<void *>(p) ); } #endif /** Set the function for calculating the derivatives. The function must implement the ROOT::Math::IGenFunction signature */ void SetFunction(const IGenFunction &f); /** Set the function f for evaluating the derivative using a GSL function pointer type @param f : free function pointer of the GSL required type @param p : pointer to the object carrying the function state (for example the function object itself) */ void SetFunction( const GSLFuncPointer &f, void * p = 0); /** Computes the numerical derivative of a function f at a point x. It uses Derivator::EvalCentral to compute the derivative using an adaptive central difference algorithm with a step size h */ double Eval(double x, double h = 1E-8) const; /** Computes the numerical derivative at a point x using an adaptive central difference algorithm with a step size h. */ double EvalCentral( double x, double h = 1E-8) const; /** Computes the numerical derivative at a point x using an adaptive forward difference algorithm with a step size h. The function is evaluated only at points greater than x and at x itself. */ double EvalForward( double x, double h = 1E-8) const; /** Computes the numerical derivative at a point x using an adaptive backward difference algorithm with a step size h. The function is evaluated only at points less than x and at x itself. */ double EvalBackward( double x, double h = 1E-8) const; /** @name --- Static methods --- This methods don't require to use a Derivator object, and are designed to be used in fast calculation. Error and status code cannot be retrieved in this case */ /** Computes the numerical derivative of a function f at a point x. It uses Derivator::EvalCentral to compute the derivative using an adaptive central difference algorithm with a step size h */ static double Eval(const IGenFunction & f, double x, double h = 1E-8); /** Computes the numerical derivative of a function f at a point x using an adaptive central difference algorithm with a step size h */ static double EvalCentral(const IGenFunction & f, double x, double h = 1E-8); /** Computes the numerical derivative of a function f at a point x using an adaptive forward difference algorithm with a step size h. The function is evaluated only at points greater than x and at x itself */ static double EvalForward(const IGenFunction & f, double x, double h = 1E-8); /** Computes the numerical derivative of a function f at a point x using an adaptive backward difference algorithm with a step size h. The function is evaluated only at points less than x and at x itself */ static double EvalBackward(const IGenFunction & f, double x, double h = 1E-8); // for multi-dimension funcitons /** Evaluate the partial derivative of a multi-dim function with respect coordinate x_icoord at the point x[] */ static double Eval(const IMultiGenFunction & f, const double * x, unsigned int icoord = 0, double h = 1E-8); /** Evaluate the derivative with respect a parameter for one-dim parameteric function at the point ( x,p[]) with respect the parameter p_ipar */ static double Eval(IParamFunction & f, double x, const double * p, unsigned int ipar = 0, double h = 1E-8); /** Evaluate the derivative with respect a parameter for a multi-dim parameteric function at the point ( x[],p[]) with respect the parameter p_ipar */ static double Eval(IParamMultiFunction & f, const double * x, const double * p, unsigned int ipar = 0, double h = 1E-8); /** return the error status of the last derivative calculation */ int Status() const; /** return the result of the last derivative calculation */ double Result() const; /** return the estimate of the absolute error of the last derivative calculation */ double Error() const; private: mutable GSLDerivator * fDerivator; }; } // namespace Math } // namespace ROOT #endif /* ROOT_Math_Derivator */