// @(#)root/fft:$Name: $:$Id: TFFTComplex.cxx,v 1.4 2006/10/27 16:21:11 brun Exp $ // Author: Anna Kreshuk 07/4/2006 /************************************************************************* * Copyright (C) 1995-2006, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ ////////////////////////////////////////////////////////////////////////// // // TFFTComplex // One of the interface classes to the FFTW package, can be used directly // or via the TVirtualFFT class. Only the basic interface of FFTW is implemented. // Computes complex input/output discrete Fourier transforms (DFT) // in one or more dimensions. For the detailed information on the computed // transforms please refer to the FFTW manual, chapter "What FFTW really computes". // // How to use it: // 1) Create an instance of TFFTComplex - this will allocate input and output // arrays (unless an in-place transform is specified) // 2) Run the Init() function with the desired flags and settings // 3) Set the data (via SetPoints(), SetPoint() or SetPointComplex() functions) // 4) Run the Transform() function // 5) Get the output (via GetPoints(), GetPoint() or GetPointComplex() functions) // 6) Repeat steps 3)-5) as needed // // For a transform of the same size, but with different flags or sign, rerun the Init() // function and continue with steps 3)-5) // NOTE: 1) running Init() function will overwrite the input array! Don't set any data // before running the Init() function // 2) FFTW computes unnormalized transform, so doing a transform followed by // its inverse will lead to the original array scaled by the transform size // ////////////////////////////////////////////////////////////////////////// #include "TFFTComplex.h" #include "fftw3.h" #include "TComplex.h" ClassImp(TFFTComplex) //_____________________________________________________________________________ TFFTComplex::TFFTComplex() { //default fIn = 0; fOut = 0; fPlan = 0; fN = 0; } //_____________________________________________________________________________ TFFTComplex::TFFTComplex(Int_t n, Bool_t inPlace) { //For 1d transforms //Allocates memory for the input array, and, if inPlace = kFALSE, for the output array fIn = fftw_malloc(sizeof(fftw_complex) *n); if (!inPlace) fOut = fftw_malloc(sizeof(fftw_complex) * n); else fOut = 0; fN = new Int_t[1]; fN[0] = n; fTotalSize = n; fNdim = 1; fPlan = 0; } //_____________________________________________________________________________ TFFTComplex::TFFTComplex(Int_t ndim, Int_t *n, Bool_t inPlace) { //For multidim. transforms //Allocates memory for the input array, and, if inPlace = kFALSE, for the output array fNdim = ndim; fTotalSize = 1; fN = new Int_t[fNdim]; for (Int_t i=0; i<fNdim; i++){ fN[i] = n[i]; fTotalSize*=n[i]; } fIn = fftw_malloc(sizeof(fftw_complex)*fTotalSize); if (!inPlace) fOut = fftw_malloc(sizeof(fftw_complex) * fTotalSize); else fOut = 0; fPlan = 0; } //_____________________________________________________________________________ TFFTComplex::~TFFTComplex() { //Destroys the data arrays and the plan. However, some plan information stays around //until the root session is over, and is reused if other plans of the same size are //created fftw_destroy_plan((fftw_plan)fPlan); fPlan = 0; fftw_free((fftw_complex*)fIn); if (fOut) fftw_free((fftw_complex*)fOut); if (fN) delete [] fN; } //_____________________________________________________________________________ void TFFTComplex::Init( Option_t *flags, Int_t sign,const Int_t* /*kind*/) { //Creates the fftw-plan // //NOTE: input and output arrays are overwritten during initialisation, // so don't set any points, before running this function!!!!! // //2nd parameter: +1 //Argument kind is dummy and doesn't need to be specified //Possible flag_options: //"ES" (from "estimate") - no time in preparing the transform, but probably sub-optimal // performance //"M" (from "measure") - some time spend in finding the optimal way to do the transform //"P" (from "patient") - more time spend in finding the optimal way to do the transform //"EX" (from "exhaustive") - the most optimal way is found //This option should be chosen depending on how many transforms of the same size and //type are going to be done. Planning is only done once, for the first transform of this //size and type. fSign = sign; fFlags = flags; if (fOut) fPlan = (void*)fftw_plan_dft(fNdim, fN, (fftw_complex*)fIn, (fftw_complex*)fOut, sign,MapFlag(flags)); else fPlan = (void*)fftw_plan_dft(fNdim, fN, (fftw_complex*)fIn, (fftw_complex*)fIn, sign, MapFlag(flags)); } //_____________________________________________________________________________ void TFFTComplex::Transform() { //Computes the transform, specified in Init() function if (fPlan) fftw_execute((fftw_plan)fPlan); else { Error("Transform", "transform not initialised"); return; } } //_____________________________________________________________________________ void TFFTComplex::GetPoints(Double_t *data, Bool_t fromInput) const { //Copies the output(or input) into the argument array if (!fromInput){ for (Int_t i=0; i<2*fTotalSize; i+=2){ data[i] = ((fftw_complex*)fOut)[i/2][0]; data[i+1] = ((fftw_complex*)fOut)[i/2][1]; } } else { for (Int_t i=0; i<2*fTotalSize; i+=2){ data[i] = ((fftw_complex*)fIn)[i/2][0]; data[i+1] = ((fftw_complex*)fIn)[i/2][1]; } } } //_____________________________________________________________________________ void TFFTComplex::GetPointComplex(Int_t ipoint, Double_t &re, Double_t &im, Bool_t fromInput) const { //returns real and imaginary parts of the point #ipoint if (fOut && !fromInput){ re = ((fftw_complex*)fOut)[ipoint][0]; im = ((fftw_complex*)fOut)[ipoint][1]; } else { re = ((fftw_complex*)fIn)[ipoint][0]; im = ((fftw_complex*)fIn)[ipoint][1]; } } //_____________________________________________________________________________ void TFFTComplex::GetPointComplex(const Int_t *ipoint, Double_t &re, Double_t &im, Bool_t fromInput) const { //For multidimensional transforms. Returns real and imaginary parts of the point #ipoint Int_t ireal = ipoint[0]; for (Int_t i=0; i<fNdim-1; i++) ireal=fN[i+1]*ireal + ipoint[i+1]; if (fOut && !fromInput){ re = ((fftw_complex*)fOut)[ireal][0]; im = ((fftw_complex*)fOut)[ireal][1]; } else { re = ((fftw_complex*)fIn)[ireal][0]; im = ((fftw_complex*)fIn)[ireal][1]; } } //_____________________________________________________________________________ void TFFTComplex::GetPointsComplex(Double_t *re, Double_t *im, Bool_t fromInput) const { //Copies real and imaginary parts of the output (input) into the argument arrays if (fOut && !fromInput){ for (Int_t i=0; i<fTotalSize; i++){ re[i] = ((fftw_complex*)fOut)[i][0]; im[i] = ((fftw_complex*)fOut)[i][1]; } } else { for (Int_t i=0; i<fTotalSize; i++){ re[i] = ((fftw_complex*)fIn)[i][0]; im[i] = ((fftw_complex*)fIn)[i][1]; } } } //_____________________________________________________________________________ void TFFTComplex::GetPointsComplex(Double_t *data, Bool_t fromInput) const { //Copies the output(input) into the argument array if (fOut && !fromInput){ for (Int_t i=0; i<fTotalSize; i+=2){ data[i] = ((fftw_complex*)fOut)[i/2][0]; data[i+1] = ((fftw_complex*)fOut)[i/2][1]; } } else { for (Int_t i=0; i<fTotalSize; i+=2){ data[i] = ((fftw_complex*)fIn)[i/2][0]; data[i+1] = ((fftw_complex*)fIn)[i/2][1]; } } } //_____________________________________________________________________________ void TFFTComplex::SetPoint(Int_t ipoint, Double_t re, Double_t im) { //sets real and imaginary parts of point # ipoint ((fftw_complex*)fIn)[ipoint][0]=re; ((fftw_complex*)fIn)[ipoint][1]=im; } //_____________________________________________________________________________ void TFFTComplex::SetPoint(const Int_t *ipoint, Double_t re, Double_t im) { //For multidim. transforms. Sets real and imaginary parts of point # ipoint Int_t ireal = ipoint[0]; for (Int_t i=0; i<fNdim-1; i++) ireal=fN[i+1]*ireal + ipoint[i+1]; ((fftw_complex*)fIn)[ireal][0]=re; ((fftw_complex*)fIn)[ireal][1]=im; } //_____________________________________________________________________________ void TFFTComplex::SetPointComplex(Int_t ipoint, TComplex &c) { ((fftw_complex*)fIn)[ipoint][0] = c.Re(); ((fftw_complex*)fIn)[ipoint][1] = c.Im(); } //_____________________________________________________________________________ void TFFTComplex::SetPoints(const Double_t *data) { //set all points. the values are copied. points should be ordered as follows: //[re_0, im_0, re_1, im_1, ..., re_n, im_n) for (Int_t i=0; i<2*fTotalSize-1; i+=2){ ((fftw_complex*)fIn)[i/2][0]=data[i]; ((fftw_complex*)fIn)[i/2][1]=data[i+1]; } } //_____________________________________________________________________________ void TFFTComplex::SetPointsComplex(const Double_t *re_data, const Double_t *im_data) { //set all points. the values are copied if (!fIn){ Error("SetPointsComplex", "Size is not set yet"); return; } for (Int_t i=0; i<fTotalSize; i++){ ((fftw_complex*)fIn)[i][0]=re_data[i]; ((fftw_complex*)fIn)[i][1]=im_data[i]; } } //_____________________________________________________________________________ UInt_t TFFTComplex::MapFlag(Option_t *flag) { //allowed options: //"ES" - FFTW_ESTIMATE //"M" - FFTW_MEASURE //"P" - FFTW_PATIENT //"EX" - FFTW_EXHAUSTIVE TString opt = flag; opt.ToUpper(); if (opt.Contains("ES")) return FFTW_ESTIMATE; if (opt.Contains("M")) return FFTW_MEASURE; if (opt.Contains("P")) return FFTW_PATIENT; if (opt.Contains("EX")) return FFTW_EXHAUSTIVE; return FFTW_ESTIMATE; }