// @(#)root/quadp:$Name: $:$Id: TQpVar.h,v 1.7 2006/06/28 05:17:13 brun Exp $ // Author: Eddy Offermann May 2004 /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ /************************************************************************* * Parts of this file are copied from the OOQP distribution and * * are subject to the following license: * * * * COPYRIGHT 2001 UNIVERSITY OF CHICAGO * * * * The copyright holder hereby grants you royalty-free rights to use, * * reproduce, prepare derivative works, and to redistribute this software* * to others, provided that any changes are clearly documented. This * * software was authored by: * * * * E. MICHAEL GERTZ gertz@mcs.anl.gov * * Mathematics and Computer Science Division * * Argonne National Laboratory * * 9700 S. Cass Avenue * * Argonne, IL 60439-4844 * * * * STEPHEN J. WRIGHT swright@cs.wisc.edu * * Computer Sciences Department * * University of Wisconsin * * 1210 West Dayton Street * * Madison, WI 53706 FAX: (608)262-9777 * * * * Any questions or comments may be directed to one of the authors. * * * * ARGONNE NATIONAL LABORATORY (ANL), WITH FACILITIES IN THE STATES OF * * ILLINOIS AND IDAHO, IS OWNED BY THE UNITED STATES GOVERNMENT, AND * * OPERATED BY THE UNIVERSITY OF CHICAGO UNDER PROVISION OF A CONTRACT * * WITH THE DEPARTMENT OF ENERGY. * *************************************************************************/ #ifndef ROOT_TQpVar #define ROOT_TQpVar #ifndef ROOT_TROOT #include "TROOT.h" #endif #ifndef ROOT_TClass #include "TClass.h" #endif #ifndef ROOT_TError #include "TError.h" #endif #ifndef ROOT_TMath #include "TMath.h" #endif #ifndef ROOT_TMatrixD #include "TMatrixD.h" #endif #ifndef ROOT_TVectorD #include "TVectorD.h" #endif /////////////////////////////////////////////////////////////////////////// // // // Class containing the variables for the general QP formulation // // In terms of in our abstract problem formulation, these variables are // // the vectors x, y, z and s. // // // /////////////////////////////////////////////////////////////////////////// class TQpVar : public TObject { protected: Int_t fNx; Int_t fMy; Int_t fMz; Int_t fNxup; Int_t fNxlo; Int_t fMcup; Int_t fMclo; // these variables will be "Used" not copied TVectorD fXloIndex; TVectorD fXupIndex; TVectorD fCupIndex; TVectorD fCloIndex; static Double_t StepBound (TVectorD &v,TVectorD &dir,Double_t maxStep); static Double_t FindBlocking (TVectorD &w,TVectorD &wstep,TVectorD &u,TVectorD &ustep, Double_t maxStep,Double_t &w_elt,Double_t &wstep_elt,Double_t &u_elt, Double_t &ustep_elt,int& first_or_second); static Double_t FindBlockingSub(Int_t n,Double_t *w,Int_t incw,Double_t *wstep,Int_t incwstep, Double_t *u,Int_t incu,Double_t *ustep,Int_t incustep, Double_t maxStep,Double_t &w_elt,Double_t &wstep_elt, Double_t &u_elt,Double_t &ustep_elt,Int_t &first_or_second); public: Int_t fNComplementaryVariables; // number of complementary primal-dual variables. // these variables will be "Used" not copied TVectorD fX; TVectorD fS; TVectorD fY; TVectorD fZ; TVectorD fV; TVectorD fPhi; TVectorD fW; TVectorD fGamma; TVectorD fT; TVectorD fLambda; TVectorD fU; TVectorD fPi; TQpVar(); // constructor in which the data and variable pointers are set to point to the given arguments TQpVar(TVectorD &x_in,TVectorD &s_in,TVectorD &y_in,TVectorD &z_in, TVectorD &v_in,TVectorD &gamma_in,TVectorD &w_in,TVectorD &phi_in, TVectorD &t_in,TVectorD &lambda_in,TVectorD &u_in,TVectorD &pi_in, TVectorD &ixlow_in,TVectorD &ixupp_in,TVectorD &iclow_in,TVectorD &icupp_in); // constructor that creates variables objects of specified dimensions. TQpVar(Int_t nx,Int_t my,Int_t mz, TVectorD &ixlow,TVectorD &ixupp,TVectorD &iclow,TVectorD &icupp); TQpVar(const TQpVar &another); virtual ~TQpVar() {} // Indicates what type is the blocking variable in the step length determination. If kt_block, // then the blocking variable is one of the slack variables t for a general lower bound, // and so on. Special value kno_block is for the case in which a step length of 1 can be // taken without hitting the bound. enum EVarBlock { kno_block,kt_block,klambda_block,ku_block,kpi_block, kv_block,kgamma_block,kw_block,kphi_block }; virtual Double_t GetMu (); // compute complementarity gap, obtained by taking the // inner product of the complementary vectors and dividing // by the total number of components // computes mu = (t'lambda +u'pi + v'gamma + w'phi)/ // (mclow+mcupp+nxlow+nxupp) virtual Double_t MuStep (TQpVar *step,Double_t alpha); // compute the complementarity gap resulting from a step // of length "alpha" along direction "step" virtual void Saxpy (TQpVar *b,Double_t alpha); // given variables b, compute a <- a + alpha b, // where a are the variables in this class virtual void Negate (); // negate the value of all the variables in this structure virtual Double_t StepBound (TQpVar *b); // calculate the largest alpha in (0,1] such that the // nonnegative variables stay nonnegative in the given // search direction. In the general QP problem formulation // this is the largest value of alpha such that // (t,u,v,w,lambda,pi,phi,gamma) + alpha * (b->t,b->u, // b->v,b->w,b->lambda,b->pi,b->phi,b->gamma) >= 0. virtual Double_t FindBlocking(TQpVar *step,Double_t &primalValue,Double_t &primalStep,Double_t &dualValue, Double_t &dualStep,Int_t &firstOrSecond); // Performs the same function as StepBound, and supplies // additional information about which component of the // nonnegative variables is responsible for restricting // alpha. In terms of the abstract formulation, the // components have the following meanings. // // primalValue: the value of the blocking component of the // primal variables (u,t,v,w). // primalStep: the corresponding value of the blocking // component of the primal step variables (b->u,b->t, // b->v,b->w) // dualValue: the value of the blocking component of the // dual variables (lambda,pi,phi,gamma). // dualStep: the corresponding value of the blocking // component of the dual step variables (b->lambda,b->pi, // b->phi,b->gamma) // firstOrSecond: 1 if the primal step is blocking, 2 // if the dual step is block, 0 if no step is blocking. virtual void InteriorPoint(Double_t alpha,Double_t beta); // sets components of (u,t,v,w) to alpha and of // (lambda,pi,phi,gamma) to beta virtual void ShiftBoundVariables (Double_t alpha,Double_t beta); // add alpha to components of (u,t,v,w) and beta to // components of (lambda,pi,phi,gamma) virtual Bool_t IsInteriorPoint(); // check whether this is an interior point. Useful as a // sanity check. virtual Double_t Violation (); // The amount by which the current variables violate the // non-negativity constraints. virtual void Print (Option_t *option="") const; virtual Double_t Norm1 (); // compute the 1-norm of the variables virtual Double_t NormInf (); // compute the inf-norm of the variables virtual Bool_t ValidNonZeroPattern(); TQpVar &operator= (const TQpVar &source); ClassDef(TQpVar,1) // Qp Variables class }; #endif