#ifndef ROOT_Fit_FitResult
#define ROOT_Fit_FitResult
#ifndef ROOT_Fit_IFunctionfwd
#include "Math/IFunctionfwd.h"
#endif
#ifndef ROOT_Fit_IParamFunctionfwd
#include "Math/IParamFunctionfwd.h"
#endif
#include <vector>
#include <string>
#include <cmath>
namespace ROOT { 
   namespace Math { 
      class Minimizer; 
   }
   namespace Fit { 
   class FitConfig; 
 
class FitResult {
public: 
   typedef  ROOT::Math::IParamMultiFunction IModelFunction; 
    
   FitResult (); 
   
   FitResult(ROOT::Math::Minimizer & min, const FitConfig & fconfig, const IModelFunction & f, bool isValid, unsigned int sizeOfData = 0, const ROOT::Math::IMultiGenFunction * chi2func = 0, bool minosErr = false, unsigned int ncalls = 0);
  
    
   ~FitResult ()  {}  
public: 
   
   
   const std::string & MinimizerType() const { return fMinimType; } 
   
   bool IsValid() const { return fValid; }
 
   
   double MinFcnValue() const { return fVal; } 
   
   unsigned int NCalls() const { return fNCalls; }
   
   
   double Edm() const { return fEdm; }
   
   
   const IModelFunction * FittedFunction() const { return fFitFunc; }
   
   
   double Chi2() const { return fChi2; } 
   
   unsigned int Ndf() const { return fNdf; } 
   
   double Prob() const;  
 
   
   const std::vector<double> & Errors() const { return fErrors; }
   
   const std::vector<double> & Parameters() const { return fParams; }
   
   double Value(unsigned int i) const { return fParams[i]; }
   
   double Error(unsigned int i) const { return fErrors[i]; } 
   
   double LowerError(unsigned int i) const { return fMinosErrors[i].first; } 
   
   double UpperError(unsigned int i) const { return fMinosErrors[i].second; }  
   
   double CovMatrix (unsigned int i, unsigned int j) const { 
      if ( i >= fErrors.size() || j >= fErrors.size() ) return 0; 
      if (fCovMatrix.size() == 0) return 0; 
      if ( j < i ) 
         return fCovMatrix[j + i* (i+1) / 2];
      else 
         return fCovMatrix[i + j* (j+1) / 2];
   }
   
   double Correlation(unsigned int i, unsigned int j ) const { 
      if ( i >= fErrors.size() || j >= fErrors.size() ) return 0; 
      if (fCovMatrix.size() == 0) return 0; 
      double tmp = CovMatrix(i,i)*CovMatrix(j,j); 
      return ( tmp < 0) ? 0 : CovMatrix(i,j)/ std::sqrt(tmp); 
   }
   
   
   
   template<class Matrix> 
   void GetCovarianceMatrix(Matrix & mat) { 
      int npar = fErrors.size(); 
      for (int i = 0; i< npar; ++i) { 
         for (int j = 0; j<=i; ++i) { 
            mat(i,j) = fCovMatrix[j + i*(i+1)/2 ];
         }
      }
   }
   
   
   template<class Matrix> 
   void GetCorrelationMatrix(Matrix & mat) { 
      int npar = fErrors.size(); 
      for (int i = 0; i< npar; ++i) { 
         for (int j = 0; j<=i; ++i) { 
            double tmp = fCovMatrix[i * (i +3)/2 ] * fCovMatrix[ j * (j+3)/2 ]; 
            if (tmp < 0) 
               mat(i,j) = 0; 
            else 
               mat(i,j) = fCovMatrix[j + i*(i+1)/2 ] / std::sqrt(tmp); 
         }
      }
   }
   
   int Index(const std::string & name) const; 
   
   void NormalizeErrors();
   
   bool NormalizedErrors() { return fNormalized; }
   
   void Print(std::ostream & os, bool covmat = false) const;
   
   void PrintCovMatrix(std::ostream & os) const; 
protected: 
private: 
   bool fValid; 
   bool fNormalized;
   double fVal; 
   double fEdm; 
   double fChi2;
   std::vector<double> fCov; 
   unsigned int fNdf; 
   unsigned int fNCalls; 
   std::vector<double> fParams; 
   std::vector<double> fErrors; 
   std::vector<double> fCovMatrix; 
   std::vector<std::pair<double,double> > fMinosErrors; 
   unsigned int fDataSize; 
   const IModelFunction * fFitFunc; 
   std::string fMinimType; 
}; 
   } 
} 
#endif /* ROOT_Fit_FitResult */
Last change: Wed Jun 25 08:29:15 2008
Last generated: 2008-06-25 08:29
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.