// @(#)root/mathmore:$Id: GSLNLSMinimizer.h 29104 2009-06-19 13:41:05Z moneta $ // Author: L. Moneta Wed Dec 20 17:16:32 2006 /********************************************************************** * * * Copyright (c) 2006 LCG ROOT Math Team, CERN/PH-SFT * * * * This library is free software; you can redistribute it and/or * * modify it under the terms of the GNU General Public License * * as published by the Free Software Foundation; either version 2 * * of the License, or (at your option) any later version. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this library (see file COPYING); if not, write * * to the Free Software Foundation, Inc., 59 Temple Place, Suite * * 330, Boston, MA 02111-1307 USA, or contact the author. * * * **********************************************************************/ // Header file for class GSLNLSMinimizer #ifndef ROOT_Math_GSLNLSMinimizer #define ROOT_Math_GSLNLSMinimizer #ifndef ROOT_Math_Minimizer #include "Math/Minimizer.h" #endif #ifndef ROOT_Math_IFunctionfwd #include "Math/IFunctionfwd.h" #endif #ifndef ROOT_Math_IParamFunctionfwd #include "Math/IParamFunctionfwd.h" #endif #ifndef ROOT_Math_FitMethodFunction #include "Math/FitMethodFunction.h" #endif #ifndef ROOT_Math_MinimizerVariable #include "Math/MinimizerVariable.h" #endif #include <vector> #include <map> #include <string> namespace ROOT { namespace Math { class GSLMultiFit; //________________________________________________________________________________ /** LSResidualFunc class description. Internal class used for accessing the residuals of the Least Square function and their derivates which are estimated numerically using GSL numerical derivation. The class contains a pointer to the fit method function and an index specifying the i-th residual and wraps it in a multi-dim gradient function interface ROOT::Math::IGradientFunctionMultiDim. The class is used by ROOT::Math::GSLNLSMinimizer (GSL non linear least square fitter) @ingroup MultiMin */ class LSResidualFunc : public IMultiGradFunction { public: //default ctor (required by CINT) LSResidualFunc() : fIndex(0), fChi2(0) {} LSResidualFunc(const ROOT::Math::FitMethodFunction & func, unsigned int i) : fIndex(i), fChi2(&func), fX2(std::vector<double>(func.NDim() ) ) {} // copy ctor LSResidualFunc(const LSResidualFunc & rhs) : IMultiGenFunction(), IMultiGradFunction() { operator=(rhs); } // assignment LSResidualFunc & operator= (const LSResidualFunc & rhs) { fIndex = rhs.fIndex; fChi2 = rhs.fChi2; fX2 = rhs.fX2; return *this; } IMultiGenFunction * Clone() const { return new LSResidualFunc(*fChi2,fIndex); } unsigned int NDim() const { return fChi2->NDim(); } void Gradient( const double * x, double * g) const { unsigned int n = NDim(); std::copy(x,x+n,fX2.begin()); const double kEps = 1.0E-4; double f0 = DoEval(x); for (unsigned int i = 0; i < n; ++i) { fX2[i] += kEps; g[i] = ( DoEval(&fX2.front()) - f0 )/kEps; fX2[i] = x[i]; } } private: double DoEval (const double * x) const { return fChi2->DataElement(x, fIndex); } double DoDerivative(const double * x, unsigned int icoord) const { //return ROOT::Math::Derivator::Eval(*this, x, icoord, 1E-8); std::copy(x,x+NDim(),fX2.begin()); const double kEps = 1.0E-4; fX2[icoord] += kEps; return ( DoEval(&fX2.front()) - DoEval(x) )/kEps; } unsigned int fIndex; const ROOT::Math::FitMethodFunction * fChi2; mutable std::vector<double> fX2; // cached vector }; //_____________________________________________________________________________________________________ /** GSLNLSMinimizer class for Non Linear Least Square fitting It Uses the Levemberg-Marquardt algorithm from <A HREF="http://www.gnu.org/software/gsl/manual/html_node/Nonlinear-Least_002dSquares-Fitting.html"> GSL Non Linear Least Square fitting</A>. @ingroup MultiMin */ class GSLNLSMinimizer : public ROOT::Math::Minimizer { public: /** Default constructor */ GSLNLSMinimizer (int type = 0); /** Destructor (no operations) */ ~GSLNLSMinimizer (); private: // usually copying is non trivial, so we make this unaccessible /** Copy constructor */ GSLNLSMinimizer(const GSLNLSMinimizer &) : ROOT::Math::Minimizer() {} /** Assignment operator */ GSLNLSMinimizer & operator = (const GSLNLSMinimizer & rhs) { if (this == &rhs) return *this; // time saving self-test return *this; } public: /// set the function to minimize virtual void SetFunction(const ROOT::Math::IMultiGenFunction & func); /// set gradient the function to minimize virtual void SetFunction(const ROOT::Math::IMultiGradFunction & func); /// set free variable virtual bool SetVariable(unsigned int ivar, const std::string & name, double val, double step); /// set lower limited variable virtual bool SetLowerLimitedVariable(unsigned int ivar , const std::string & name , double val , double step , double lower ); /// set upper limited variable virtual bool SetUpperLimitedVariable(unsigned int ivar , const std::string & name , double val , double step , double upper ); /// set upper/lower limited variable virtual bool SetLimitedVariable(unsigned int ivar , const std::string & name , double val , double step , double lower , double upper ); /// set fixed variable virtual bool SetFixedVariable(unsigned int ivar , const std::string & name , double val ); /// set the value of an existing variable virtual bool SetVariableValue(unsigned int ivar, double val ); /// set the values of all existing variables (array must be dimensioned to the size of existing parameters) virtual bool SetVariableValues(const double * x); /// method to perform the minimization virtual bool Minimize(); /// return minimum function value virtual double MinValue() const { return fMinVal; } /// return expected distance reached from the minimum virtual double Edm() const { return fEdm; } // not impl. } /// return pointer to X values at the minimum virtual const double * X() const { return &fValues.front(); } /// return pointer to gradient values at the minimum virtual const double * MinGradient() const; /// number of function calls to reach the minimum virtual unsigned int NCalls() const { return 0; } // not yet ipl. /// this is <= Function().NDim() which is the total /// number of variables (free+ constrained ones) virtual unsigned int NDim() const { return fDim; } /// number of free variables (real dimension of the problem) /// this is <= Function().NDim() which is the total virtual unsigned int NFree() const { return fNFree; } /// minimizer provides error and error matrix virtual bool ProvidesError() const { return true; } /// return errors at the minimum virtual const double * Errors() const { return &fErrors.front(); } // { // static std::vector<double> err; // err.resize(fDim); // return &err.front(); // } /** return covariance matrices elements if the variable is fixed the matrix is zero The ordering of the variables is the same as in errors */ virtual double CovMatrix(unsigned int , unsigned int ) const; /// minos error for variable i, return false if Minos failed virtual bool GetMinosError(unsigned int , double & /* errLow */ , double & /* errUp */ ) { return false; } /// return reference to the objective function ///virtual const ROOT::Math::IGenFunction & Function() const; protected: private: unsigned int fDim; // dimension of the function to be minimized unsigned int fNFree; // dimension of the internal function to be minimized unsigned int fSize; // number of fit points (residuals) ROOT::Math::GSLMultiFit * fGSLMultiFit; // pointer to GSL multi fit solver const ROOT::Math::FitMethodFunction * fObjFunc; // pointer to Least square function double fMinVal; // minimum function value double fEdm; // edm value double fLSTolerance; // Line Search Tolerance std::vector<double> fValues; std::vector<double> fErrors; std::vector<double> fCovMatrix; // cov matrix (stored as cov[ i * dim + j] std::vector<double> fSteps; std::vector<std::string> fNames; std::vector<LSResidualFunc> fResiduals; //! transient Vector of the residual functions std::vector<ROOT::Math::EMinimVariableType> fVarTypes; // vector specifyng the type of variables std::map< unsigned int, std::pair<double, double> > fBounds; // map specifying the bound using as key the parameter index }; } // end namespace Math } // end namespace ROOT #endif /* ROOT_Math_GSLNLSMinimizer */