ROOT logo
// @(#)root/mathcore:$Id: Rotation3D.h 22516 2008-03-07 15:14:26Z moneta $
// Authors: W. Brown, M. Fischler, L. Moneta    2005  

 /**********************************************************************
  *                                                                    *
  * Copyright (c) 2005 , LCG ROOT FNAL MathLib Team                    *
  *                                                                    *
  *                                                                    *
  **********************************************************************/

// Header file for class Rotation in 3 dimensions, represented by 3x3 matrix
//
// Created by: Mark Fischler Thurs June 9  2005
//
// Last update: $Id: Rotation3D.h 22516 2008-03-07 15:14:26Z moneta $
//
#ifndef ROOT_Math_GenVector_Rotation3D 
#define ROOT_Math_GenVector_Rotation3D  1


#include "Math/GenVector/Cartesian3D.h"
#include "Math/GenVector/DisplacementVector3D.h"
#include "Math/GenVector/PositionVector3D.h"
#include "Math/GenVector/PxPyPzE4D.h"
#include "Math/GenVector/LorentzVector.h"
#include "Math/GenVector/3DConversions.h"
#include "Math/GenVector/3DDistances.h"

#include "Math/GenVector/Rotation3Dfwd.h"
#include "Math/GenVector/AxisAnglefwd.h"
#include "Math/GenVector/EulerAnglesfwd.h"
#include "Math/GenVector/Quaternionfwd.h"
#include "Math/GenVector/RotationXfwd.h"
#include "Math/GenVector/RotationYfwd.h"
#include "Math/GenVector/RotationZfwd.h"


#include <algorithm>
#include <cassert>
#include <iostream>


namespace ROOT {
namespace Math {


//__________________________________________________________________________________________
  /**
     Rotation class with the (3D) rotation represented by
     a 3x3 orthogonal matrix.
     This is the optimal representation for application to vectors.
     See also ROOT::Math::AxisAngle, ROOT::Math::EulerAngles, and ROOT::Math::Quaternion for 
     classes which have conversion operators to Rotation3D.

     All Rotations types (not only Rotation3D) can be applied to all 3D Vector classes 
     (like ROOT::Math::DisplacementVector3D and ROOT::Math::PositionVector3D) 
     and also to the 4D Vectors (ROOT::Math::LorentzVector classes), acting on the 3D components. 
     A rotaiton operation is applied by using the operator() or the operator *. 
     With the operator * is possible also to combine rotations. 
     Note that the operator is NOT commutative, the order how the rotations are applied is relevant.   

     @ingroup GenVector
  */

class Rotation3D {

public:

   typedef double Scalar;

   enum ERotation3DMatrixIndex {
      kXX = 0, kXY = 1, kXZ = 2
      , kYX = 3, kYY = 4, kYZ = 5
      , kZX = 6, kZY = 7, kZZ = 8
   };

   // ========== Constructors and Assignment =====================

   /**
      Default constructor (identity rotation)
   */
   Rotation3D();

   /**
      Construct given a pair of pointers or iterators defining the
      beginning and end of an array of nine Scalars
   */
   template<class IT>
   Rotation3D(IT begin, IT end) { SetComponents(begin,end); }

   /**
      Construct from an AxisAngle
   */
   explicit Rotation3D( AxisAngle const   & a ) { gv_detail::convert(a, *this); }

   /**
      Construct from EulerAngles
   */
   explicit Rotation3D( EulerAngles const & e ) { gv_detail::convert(e, *this); }

   /**
      Construct from RotationZYX
   */
   explicit Rotation3D( RotationZYX const & e ) { gv_detail::convert(e, *this); }

   /**
      Construct from a Quaternion
   */
   explicit Rotation3D( Quaternion const  & q ) { gv_detail::convert(q, *this); }

   /**
      Construct from an axial rotation
   */
   explicit Rotation3D( RotationZ const & r ) { gv_detail::convert(r, *this); }
   explicit Rotation3D( RotationY const & r ) { gv_detail::convert(r, *this); }
   explicit Rotation3D( RotationX const & r ) { gv_detail::convert(r, *this); }

   /**
      Construct from a linear algebra matrix of size at least 3x3,
      which must support operator()(i,j) to obtain elements (0,0) thru (2,2).
      Precondition:  The matrix is assumed to be orthonormal.  No checking
      or re-adjusting is performed.
   */
   template<class ForeignMatrix>
   explicit Rotation3D(const ForeignMatrix & m) { SetComponents(m); }

   /**
      Construct from three orthonormal vectors (which must have methods
      x(), y() and z()) which will be used as the columns of the rotation
      matrix.  The orthonormality will be checked, and values adjusted
      so that the result will always be a good rotation matrix.
   */
   template<class ForeignVector>
   Rotation3D(const ForeignVector& v1,
              const ForeignVector& v2,
              const ForeignVector& v3 ) { SetComponents(v1, v2, v3); }

   // The compiler-generated copy ctor, copy assignment, and dtor are OK.

   /**
      Raw constructor from nine Scalar components (without any checking)
   */
   Rotation3D(Scalar  xx, Scalar  xy, Scalar  xz,
              Scalar  yx, Scalar  yy, Scalar  yz,
              Scalar  zx, Scalar  zy, Scalar  zz)
   {
      SetComponents (xx, xy, xz, yx, yy, yz, zx, zy, zz);
   }

   /**
      Assign from an AxisAngle
   */
   Rotation3D &
   operator=( AxisAngle const   & a ) { return operator=(Rotation3D(a)); }

   /**
      Assign from EulerAngles
   */
   Rotation3D &
   operator=( EulerAngles const & e ) { return operator=(Rotation3D(e)); }

   /**
      Assign from RotationZYX
   */
   Rotation3D &
   operator=( RotationZYX const & r ) { return operator=(Rotation3D(r)); }

   /**
      Assign from a Quaternion
   */
   Rotation3D &
   operator=( Quaternion const  & q ) {return operator=(Rotation3D(q)); }

   /**
      Assign from an axial rotation
   */
   Rotation3D &
   operator=( RotationZ const & r ) { return operator=(Rotation3D(r)); }
   Rotation3D &
   operator=( RotationY const & r ) { return operator=(Rotation3D(r)); }
   Rotation3D &
   operator=( RotationX const & r ) { return operator=(Rotation3D(r)); }

   /**
      Assign from an orthonormal linear algebra matrix of size 3x3,
      which must support operator()(i,j) to obtain elements (0,0) thru (2,2).
   */
   template<class ForeignMatrix>
   Rotation3D &
   operator=(const ForeignMatrix & m) { SetComponents(m); return *this; }

   /**
      Re-adjust components to eliminate small deviations from perfect
      orthonormality.
   */
   void Rectify();

   // ======== Components ==============

   /**
      Set components from three orthonormal vectors (which must have methods
      x(), y() and z()) which will be used as the columns of the rotation
      matrix.  The orthonormality will be checked, and values adjusted
      so that the result will always be a good rotation matrix.
   */
   template<class ForeignVector>
   void
   SetComponents (const ForeignVector& v1,
                  const ForeignVector& v2,
                  const ForeignVector& v3 ) {
      fM[kXX]=v1.x();  fM[kXY]=v2.x();  fM[kXZ]=v3.x();
      fM[kYX]=v1.y();  fM[kYY]=v2.y();  fM[kYZ]=v3.y();
      fM[kZX]=v1.z();  fM[kZY]=v2.z();  fM[kZZ]=v3.z();
      Rectify();
   }

   /**
      Get components into three vectors which will be the (orthonormal) 
      columns of the rotation matrix.  (The vector class must have a 
      constructor from 3 Scalars.) 
   */
   template<class ForeignVector>
   void
   GetComponents ( ForeignVector& v1,
                   ForeignVector& v2,
                   ForeignVector& v3 ) const {
      v1 = ForeignVector ( fM[kXX], fM[kYX], fM[kZX] );
      v2 = ForeignVector ( fM[kXY], fM[kYY], fM[kZY] );
      v3 = ForeignVector ( fM[kXZ], fM[kYZ], fM[kZZ] );
   }

   /**
      Set the 9 matrix components given an iterator to the start of
      the desired data, and another to the end (9 past start).
   */
   template<class IT>
   void SetComponents(IT begin, IT end) {
      for (int i = 0; i <9; ++i) { 
         fM[i] = *begin;
         ++begin;  
      }
      assert (end==begin);
   }

   /**
      Get the 9 matrix components into data specified by an iterator begin
      and another to the end of the desired data (9 past start).
   */
   template<class IT>
   void GetComponents(IT begin, IT end) const {
      for (int i = 0; i <9; ++i) { 
         *begin = fM[i];
         ++begin; 
      }
      assert (end==begin);
   }

   /**
      Get the 9 matrix components into data specified by an iterator begin
   */
   template<class IT>
   void GetComponents(IT begin) const {
      std::copy ( fM, fM+9, begin );
   }

   /**
      Set components from a linear algebra matrix of size at least 3x3,
      which must support operator()(i,j) to obtain elements (0,0) thru (2,2).
      Precondition:  The matrix is assumed to be orthonormal.  NO checking
      or re-adjusting is performed.
   */
   template<class ForeignMatrix>
   void
   SetRotationMatrix (const ForeignMatrix & m) {
      fM[kXX]=m(0,0);  fM[kXY]=m(0,1);  fM[kXZ]=m(0,2);
      fM[kYX]=m(1,0);  fM[kYY]=m(1,1);  fM[kYZ]=m(1,2);
      fM[kZX]=m(2,0);  fM[kZY]=m(2,1);  fM[kZZ]=m(2,2);
   }

   /**
      Get components into a linear algebra matrix of size at least 3x3,
      which must support operator()(i,j) for write access to elements
      (0,0) thru (2,2).
   */
   template<class ForeignMatrix>
   void
   GetRotationMatrix (ForeignMatrix & m) const {
      m(0,0)=fM[kXX];  m(0,1)=fM[kXY];  m(0,2)=fM[kXZ];
      m(1,0)=fM[kYX];  m(1,1)=fM[kYY];  m(1,2)=fM[kYZ];
      m(2,0)=fM[kZX];  m(2,1)=fM[kZY];  m(2,2)=fM[kZZ];
   }

   /**
      Set the components from nine scalars -- UNCHECKED for orthonormaility
   */
   void
   SetComponents (Scalar  xx, Scalar  xy, Scalar  xz,
                  Scalar  yx, Scalar  yy, Scalar  yz,
                  Scalar  zx, Scalar  zy, Scalar  zz) {
      fM[kXX]=xx;  fM[kXY]=xy;  fM[kXZ]=xz;
      fM[kYX]=yx;  fM[kYY]=yy;  fM[kYZ]=yz;
      fM[kZX]=zx;  fM[kZY]=zy;  fM[kZZ]=zz;
   }

   /**
      Get the nine components into nine scalars
   */
   void
   GetComponents (Scalar &xx, Scalar &xy, Scalar &xz,
                  Scalar &yx, Scalar &yy, Scalar &yz,
                  Scalar &zx, Scalar &zy, Scalar &zz) const {
      xx=fM[kXX];  xy=fM[kXY];  xz=fM[kXZ];
      yx=fM[kYX];  yy=fM[kYY];  yz=fM[kYZ];
      zx=fM[kZX];  zy=fM[kZY];  zz=fM[kZZ];
   }

   // =========== operations ==============


   /**
      Rotation operation on a displacement vector in any coordinate system
   */
   template <class CoordSystem, class U>
   DisplacementVector3D<CoordSystem,U>
   operator() (const DisplacementVector3D<CoordSystem,U> & v) const {
      DisplacementVector3D< Cartesian3D<double>,U > xyz;
      xyz.SetXYZ( fM[kXX] * v.X() + fM[kXY] * v.Y() + fM[kXZ] * v.Z() ,
                  fM[kYX] * v.X() + fM[kYY] * v.Y() + fM[kYZ] * v.Z() , 
                  fM[kZX] * v.X() + fM[kZY] * v.Y() + fM[kZZ] * v.Z() );
      return  DisplacementVector3D<CoordSystem,U>( xyz ); 
   }

   /**
      Rotation operation on a position vector in any coordinate system
   */
   template <class CoordSystem, class U>
   PositionVector3D<CoordSystem,U>
   operator() (const PositionVector3D<CoordSystem,U> & v) const {
      DisplacementVector3D< Cartesian3D<double>,U > xyz(v);
      DisplacementVector3D< Cartesian3D<double>,U > rxyz = operator()(xyz);
      return PositionVector3D<CoordSystem,U> ( rxyz );
   }

   /**
      Rotation operation on a Lorentz vector in any spatial coordinate system
   */
   template <class CoordSystem>
   LorentzVector<CoordSystem>
   operator() (const LorentzVector<CoordSystem> & v) const {
      DisplacementVector3D< Cartesian3D<double> > xyz(v.Vect());
      xyz = operator()(xyz);
      LorentzVector< PxPyPzE4D<double> > xyzt (xyz.X(), xyz.Y(), xyz.Z(), v.E());
      return LorentzVector<CoordSystem> ( xyzt );
   }

   /**
      Rotation operation on an arbitrary vector v.
      Preconditions:  v must implement methods x(), y(), and z()
      and the arbitrary vector type must have a constructor taking (x,y,z)
   */
   template <class ForeignVector>
   ForeignVector
   operator() (const  ForeignVector & v) const {
      DisplacementVector3D< Cartesian3D<double> > xyz(v);
      DisplacementVector3D< Cartesian3D<double> > rxyz = operator()(xyz);
      return ForeignVector ( rxyz.X(), rxyz.Y(), rxyz.Z() );
   }

   /**
      Overload operator * for rotation on a vector
   */
   template <class AVector>
   inline
   AVector operator* (const AVector & v) const
   {
      return operator()(v);
   }

   /**
      Invert a rotation in place
   */
   void Invert();

   /**
      Return inverse of  a rotation
   */
   Rotation3D Inverse() const { Rotation3D t(*this); t.Invert(); return t; }

   // ========= Multi-Rotation Operations ===============

   /**
      Multiply (combine) two rotations
   */
   Rotation3D operator * (const Rotation3D  & r) const { 
   return Rotation3D 
   (  fM[kXX]*r.fM[kXX] + fM[kXY]*r.fM[kYX] + fM[kXZ]*r.fM[kZX]
    , fM[kXX]*r.fM[kXY] + fM[kXY]*r.fM[kYY] + fM[kXZ]*r.fM[kZY]
    , fM[kXX]*r.fM[kXZ] + fM[kXY]*r.fM[kYZ] + fM[kXZ]*r.fM[kZZ]
    
    , fM[kYX]*r.fM[kXX] + fM[kYY]*r.fM[kYX] + fM[kYZ]*r.fM[kZX]
    , fM[kYX]*r.fM[kXY] + fM[kYY]*r.fM[kYY] + fM[kYZ]*r.fM[kZY]
    , fM[kYX]*r.fM[kXZ] + fM[kYY]*r.fM[kYZ] + fM[kYZ]*r.fM[kZZ]
    
    , fM[kZX]*r.fM[kXX] + fM[kZY]*r.fM[kYX] + fM[kZZ]*r.fM[kZX]
    , fM[kZX]*r.fM[kXY] + fM[kZY]*r.fM[kYY] + fM[kZZ]*r.fM[kZY]
    , fM[kZX]*r.fM[kXZ] + fM[kZY]*r.fM[kYZ] + fM[kZZ]*r.fM[kZZ]   );

   }
   

   /**
      Multiplication with arbitrary rotations 
    */
    // note: cannot have a  template method since it is ambigous with the operator * on vectors 

   Rotation3D operator * (const AxisAngle   & a) const;
   Rotation3D operator * (const EulerAngles & e) const;
   Rotation3D operator * (const Quaternion  & q) const;
   Rotation3D operator * (const RotationZYX & r) const;
   Rotation3D operator * (const RotationX  & rx) const;
   Rotation3D operator * (const RotationY  & ry) const;
   Rotation3D operator * (const RotationZ  & rz) const;

   /**
      Post-Multiply (on right) by another rotation :  T = T*R
   */
   template <class R>
   Rotation3D & operator *= (const R & r) { return *this = (*this)*r; }

   /**
                    Equality/inequality operators
   */
   bool operator == (const Rotation3D & rhs) const {
      if( fM[0] != rhs.fM[0] )  return false;
      if( fM[1] != rhs.fM[1] )  return false;
      if( fM[2] != rhs.fM[2] )  return false;
      if( fM[3] != rhs.fM[3] )  return false;
      if( fM[4] != rhs.fM[4] )  return false;
      if( fM[5] != rhs.fM[5] )  return false;
      if( fM[6] != rhs.fM[6] )  return false;
      if( fM[7] != rhs.fM[7] )  return false;
      if( fM[8] != rhs.fM[8] )  return false;
      return true;
   }
   bool operator != (const Rotation3D & rhs) const {
      return ! operator==(rhs);
   }

private:

   Scalar fM[9];  // 9 elements (3x3 matrix) representing the rotation

};  // Rotation3D

// ============ Class Rotation3D ends here ============

/**
   Distance between two rotations
 */
template <class R>
inline
typename Rotation3D::Scalar
Distance ( const Rotation3D& r1, const R & r2) {return gv_detail::dist(r1,r2);}

/**
   Multiplication of an axial rotation by a Rotation3D 
 */
Rotation3D operator* (RotationX const & r1, Rotation3D const & r2);
Rotation3D operator* (RotationY const & r1, Rotation3D const & r2);
Rotation3D operator* (RotationZ const & r1, Rotation3D const & r2);

/**
   Multiplication of an axial rotation by another axial Rotation 
 */
Rotation3D operator* (RotationX const & r1, RotationY const & r2);
Rotation3D operator* (RotationX const & r1, RotationZ const & r2);

Rotation3D operator* (RotationY const & r1, RotationX const & r2);
Rotation3D operator* (RotationY const & r1, RotationZ const & r2);

Rotation3D operator* (RotationZ const & r1, RotationX const & r2);
Rotation3D operator* (RotationZ const & r1, RotationY const & r2);

/**
   Stream Output and Input
 */
  // TODO - I/O should be put in the manipulator form 

std::ostream & operator<< (std::ostream & os, const Rotation3D & r);
  
} // namespace Math
} // namespace ROOT

#endif // ROOT_Math_GenVector_Rotation3D 
 Rotation3D.h:1
 Rotation3D.h:2
 Rotation3D.h:3
 Rotation3D.h:4
 Rotation3D.h:5
 Rotation3D.h:6
 Rotation3D.h:7
 Rotation3D.h:8
 Rotation3D.h:9
 Rotation3D.h:10
 Rotation3D.h:11
 Rotation3D.h:12
 Rotation3D.h:13
 Rotation3D.h:14
 Rotation3D.h:15
 Rotation3D.h:16
 Rotation3D.h:17
 Rotation3D.h:18
 Rotation3D.h:19
 Rotation3D.h:20
 Rotation3D.h:21
 Rotation3D.h:22
 Rotation3D.h:23
 Rotation3D.h:24
 Rotation3D.h:25
 Rotation3D.h:26
 Rotation3D.h:27
 Rotation3D.h:28
 Rotation3D.h:29
 Rotation3D.h:30
 Rotation3D.h:31
 Rotation3D.h:32
 Rotation3D.h:33
 Rotation3D.h:34
 Rotation3D.h:35
 Rotation3D.h:36
 Rotation3D.h:37
 Rotation3D.h:38
 Rotation3D.h:39
 Rotation3D.h:40
 Rotation3D.h:41
 Rotation3D.h:42
 Rotation3D.h:43
 Rotation3D.h:44
 Rotation3D.h:45
 Rotation3D.h:46
 Rotation3D.h:47
 Rotation3D.h:48
 Rotation3D.h:49
 Rotation3D.h:50
 Rotation3D.h:51
 Rotation3D.h:52
 Rotation3D.h:53
 Rotation3D.h:54
 Rotation3D.h:55
 Rotation3D.h:56
 Rotation3D.h:57
 Rotation3D.h:58
 Rotation3D.h:59
 Rotation3D.h:60
 Rotation3D.h:61
 Rotation3D.h:62
 Rotation3D.h:63
 Rotation3D.h:64
 Rotation3D.h:65
 Rotation3D.h:66
 Rotation3D.h:67
 Rotation3D.h:68
 Rotation3D.h:69
 Rotation3D.h:70
 Rotation3D.h:71
 Rotation3D.h:72
 Rotation3D.h:73
 Rotation3D.h:74
 Rotation3D.h:75
 Rotation3D.h:76
 Rotation3D.h:77
 Rotation3D.h:78
 Rotation3D.h:79
 Rotation3D.h:80
 Rotation3D.h:81
 Rotation3D.h:82
 Rotation3D.h:83
 Rotation3D.h:84
 Rotation3D.h:85
 Rotation3D.h:86
 Rotation3D.h:87
 Rotation3D.h:88
 Rotation3D.h:89
 Rotation3D.h:90
 Rotation3D.h:91
 Rotation3D.h:92
 Rotation3D.h:93
 Rotation3D.h:94
 Rotation3D.h:95
 Rotation3D.h:96
 Rotation3D.h:97
 Rotation3D.h:98
 Rotation3D.h:99
 Rotation3D.h:100
 Rotation3D.h:101
 Rotation3D.h:102
 Rotation3D.h:103
 Rotation3D.h:104
 Rotation3D.h:105
 Rotation3D.h:106
 Rotation3D.h:107
 Rotation3D.h:108
 Rotation3D.h:109
 Rotation3D.h:110
 Rotation3D.h:111
 Rotation3D.h:112
 Rotation3D.h:113
 Rotation3D.h:114
 Rotation3D.h:115
 Rotation3D.h:116
 Rotation3D.h:117
 Rotation3D.h:118
 Rotation3D.h:119
 Rotation3D.h:120
 Rotation3D.h:121
 Rotation3D.h:122
 Rotation3D.h:123
 Rotation3D.h:124
 Rotation3D.h:125
 Rotation3D.h:126
 Rotation3D.h:127
 Rotation3D.h:128
 Rotation3D.h:129
 Rotation3D.h:130
 Rotation3D.h:131
 Rotation3D.h:132
 Rotation3D.h:133
 Rotation3D.h:134
 Rotation3D.h:135
 Rotation3D.h:136
 Rotation3D.h:137
 Rotation3D.h:138
 Rotation3D.h:139
 Rotation3D.h:140
 Rotation3D.h:141
 Rotation3D.h:142
 Rotation3D.h:143
 Rotation3D.h:144
 Rotation3D.h:145
 Rotation3D.h:146
 Rotation3D.h:147
 Rotation3D.h:148
 Rotation3D.h:149
 Rotation3D.h:150
 Rotation3D.h:151
 Rotation3D.h:152
 Rotation3D.h:153
 Rotation3D.h:154
 Rotation3D.h:155
 Rotation3D.h:156
 Rotation3D.h:157
 Rotation3D.h:158
 Rotation3D.h:159
 Rotation3D.h:160
 Rotation3D.h:161
 Rotation3D.h:162
 Rotation3D.h:163
 Rotation3D.h:164
 Rotation3D.h:165
 Rotation3D.h:166
 Rotation3D.h:167
 Rotation3D.h:168
 Rotation3D.h:169
 Rotation3D.h:170
 Rotation3D.h:171
 Rotation3D.h:172
 Rotation3D.h:173
 Rotation3D.h:174
 Rotation3D.h:175
 Rotation3D.h:176
 Rotation3D.h:177
 Rotation3D.h:178
 Rotation3D.h:179
 Rotation3D.h:180
 Rotation3D.h:181
 Rotation3D.h:182
 Rotation3D.h:183
 Rotation3D.h:184
 Rotation3D.h:185
 Rotation3D.h:186
 Rotation3D.h:187
 Rotation3D.h:188
 Rotation3D.h:189
 Rotation3D.h:190
 Rotation3D.h:191
 Rotation3D.h:192
 Rotation3D.h:193
 Rotation3D.h:194
 Rotation3D.h:195
 Rotation3D.h:196
 Rotation3D.h:197
 Rotation3D.h:198
 Rotation3D.h:199
 Rotation3D.h:200
 Rotation3D.h:201
 Rotation3D.h:202
 Rotation3D.h:203
 Rotation3D.h:204
 Rotation3D.h:205
 Rotation3D.h:206
 Rotation3D.h:207
 Rotation3D.h:208
 Rotation3D.h:209
 Rotation3D.h:210
 Rotation3D.h:211
 Rotation3D.h:212
 Rotation3D.h:213
 Rotation3D.h:214
 Rotation3D.h:215
 Rotation3D.h:216
 Rotation3D.h:217
 Rotation3D.h:218
 Rotation3D.h:219
 Rotation3D.h:220
 Rotation3D.h:221
 Rotation3D.h:222
 Rotation3D.h:223
 Rotation3D.h:224
 Rotation3D.h:225
 Rotation3D.h:226
 Rotation3D.h:227
 Rotation3D.h:228
 Rotation3D.h:229
 Rotation3D.h:230
 Rotation3D.h:231
 Rotation3D.h:232
 Rotation3D.h:233
 Rotation3D.h:234
 Rotation3D.h:235
 Rotation3D.h:236
 Rotation3D.h:237
 Rotation3D.h:238
 Rotation3D.h:239
 Rotation3D.h:240
 Rotation3D.h:241
 Rotation3D.h:242
 Rotation3D.h:243
 Rotation3D.h:244
 Rotation3D.h:245
 Rotation3D.h:246
 Rotation3D.h:247
 Rotation3D.h:248
 Rotation3D.h:249
 Rotation3D.h:250
 Rotation3D.h:251
 Rotation3D.h:252
 Rotation3D.h:253
 Rotation3D.h:254
 Rotation3D.h:255
 Rotation3D.h:256
 Rotation3D.h:257
 Rotation3D.h:258
 Rotation3D.h:259
 Rotation3D.h:260
 Rotation3D.h:261
 Rotation3D.h:262
 Rotation3D.h:263
 Rotation3D.h:264
 Rotation3D.h:265
 Rotation3D.h:266
 Rotation3D.h:267
 Rotation3D.h:268
 Rotation3D.h:269
 Rotation3D.h:270
 Rotation3D.h:271
 Rotation3D.h:272
 Rotation3D.h:273
 Rotation3D.h:274
 Rotation3D.h:275
 Rotation3D.h:276
 Rotation3D.h:277
 Rotation3D.h:278
 Rotation3D.h:279
 Rotation3D.h:280
 Rotation3D.h:281
 Rotation3D.h:282
 Rotation3D.h:283
 Rotation3D.h:284
 Rotation3D.h:285
 Rotation3D.h:286
 Rotation3D.h:287
 Rotation3D.h:288
 Rotation3D.h:289
 Rotation3D.h:290
 Rotation3D.h:291
 Rotation3D.h:292
 Rotation3D.h:293
 Rotation3D.h:294
 Rotation3D.h:295
 Rotation3D.h:296
 Rotation3D.h:297
 Rotation3D.h:298
 Rotation3D.h:299
 Rotation3D.h:300
 Rotation3D.h:301
 Rotation3D.h:302
 Rotation3D.h:303
 Rotation3D.h:304
 Rotation3D.h:305
 Rotation3D.h:306
 Rotation3D.h:307
 Rotation3D.h:308
 Rotation3D.h:309
 Rotation3D.h:310
 Rotation3D.h:311
 Rotation3D.h:312
 Rotation3D.h:313
 Rotation3D.h:314
 Rotation3D.h:315
 Rotation3D.h:316
 Rotation3D.h:317
 Rotation3D.h:318
 Rotation3D.h:319
 Rotation3D.h:320
 Rotation3D.h:321
 Rotation3D.h:322
 Rotation3D.h:323
 Rotation3D.h:324
 Rotation3D.h:325
 Rotation3D.h:326
 Rotation3D.h:327
 Rotation3D.h:328
 Rotation3D.h:329
 Rotation3D.h:330
 Rotation3D.h:331
 Rotation3D.h:332
 Rotation3D.h:333
 Rotation3D.h:334
 Rotation3D.h:335
 Rotation3D.h:336
 Rotation3D.h:337
 Rotation3D.h:338
 Rotation3D.h:339
 Rotation3D.h:340
 Rotation3D.h:341
 Rotation3D.h:342
 Rotation3D.h:343
 Rotation3D.h:344
 Rotation3D.h:345
 Rotation3D.h:346
 Rotation3D.h:347
 Rotation3D.h:348
 Rotation3D.h:349
 Rotation3D.h:350
 Rotation3D.h:351
 Rotation3D.h:352
 Rotation3D.h:353
 Rotation3D.h:354
 Rotation3D.h:355
 Rotation3D.h:356
 Rotation3D.h:357
 Rotation3D.h:358
 Rotation3D.h:359
 Rotation3D.h:360
 Rotation3D.h:361
 Rotation3D.h:362
 Rotation3D.h:363
 Rotation3D.h:364
 Rotation3D.h:365
 Rotation3D.h:366
 Rotation3D.h:367
 Rotation3D.h:368
 Rotation3D.h:369
 Rotation3D.h:370
 Rotation3D.h:371
 Rotation3D.h:372
 Rotation3D.h:373
 Rotation3D.h:374
 Rotation3D.h:375
 Rotation3D.h:376
 Rotation3D.h:377
 Rotation3D.h:378
 Rotation3D.h:379
 Rotation3D.h:380
 Rotation3D.h:381
 Rotation3D.h:382
 Rotation3D.h:383
 Rotation3D.h:384
 Rotation3D.h:385
 Rotation3D.h:386
 Rotation3D.h:387
 Rotation3D.h:388
 Rotation3D.h:389
 Rotation3D.h:390
 Rotation3D.h:391
 Rotation3D.h:392
 Rotation3D.h:393
 Rotation3D.h:394
 Rotation3D.h:395
 Rotation3D.h:396
 Rotation3D.h:397
 Rotation3D.h:398
 Rotation3D.h:399
 Rotation3D.h:400
 Rotation3D.h:401
 Rotation3D.h:402
 Rotation3D.h:403
 Rotation3D.h:404
 Rotation3D.h:405
 Rotation3D.h:406
 Rotation3D.h:407
 Rotation3D.h:408
 Rotation3D.h:409
 Rotation3D.h:410
 Rotation3D.h:411
 Rotation3D.h:412
 Rotation3D.h:413
 Rotation3D.h:414
 Rotation3D.h:415
 Rotation3D.h:416
 Rotation3D.h:417
 Rotation3D.h:418
 Rotation3D.h:419
 Rotation3D.h:420
 Rotation3D.h:421
 Rotation3D.h:422
 Rotation3D.h:423
 Rotation3D.h:424
 Rotation3D.h:425
 Rotation3D.h:426
 Rotation3D.h:427
 Rotation3D.h:428
 Rotation3D.h:429
 Rotation3D.h:430
 Rotation3D.h:431
 Rotation3D.h:432
 Rotation3D.h:433
 Rotation3D.h:434
 Rotation3D.h:435
 Rotation3D.h:436
 Rotation3D.h:437
 Rotation3D.h:438
 Rotation3D.h:439
 Rotation3D.h:440
 Rotation3D.h:441
 Rotation3D.h:442
 Rotation3D.h:443
 Rotation3D.h:444
 Rotation3D.h:445
 Rotation3D.h:446
 Rotation3D.h:447
 Rotation3D.h:448
 Rotation3D.h:449
 Rotation3D.h:450
 Rotation3D.h:451
 Rotation3D.h:452
 Rotation3D.h:453
 Rotation3D.h:454
 Rotation3D.h:455
 Rotation3D.h:456
 Rotation3D.h:457
 Rotation3D.h:458
 Rotation3D.h:459
 Rotation3D.h:460
 Rotation3D.h:461
 Rotation3D.h:462
 Rotation3D.h:463
 Rotation3D.h:464
 Rotation3D.h:465
 Rotation3D.h:466
 Rotation3D.h:467
 Rotation3D.h:468
 Rotation3D.h:469
 Rotation3D.h:470
 Rotation3D.h:471
 Rotation3D.h:472
 Rotation3D.h:473
 Rotation3D.h:474
 Rotation3D.h:475
 Rotation3D.h:476
 Rotation3D.h:477
 Rotation3D.h:478
 Rotation3D.h:479
 Rotation3D.h:480
 Rotation3D.h:481
 Rotation3D.h:482
 Rotation3D.h:483
 Rotation3D.h:484
 Rotation3D.h:485
 Rotation3D.h:486
 Rotation3D.h:487
 Rotation3D.h:488
 Rotation3D.h:489
 Rotation3D.h:490
 Rotation3D.h:491
 Rotation3D.h:492
 Rotation3D.h:493
 Rotation3D.h:494