//////////////////////////////////////////////////////////////////////////
//
// 'DATA AND CATEGORIES' RooFit tutorial macro #401
//
// Overview of advanced option for importing data from ROOT TTree and THx histograms
// Basic import options are demonstrated in rf102_dataimport.C
//
//
// 07/2008 - Wouter Verkerke
//
/////////////////////////////////////////////////////////////////////////
#ifndef __CINT__
#include "RooGlobalFunc.h"
#endif
#include "RooRealVar.h"
#include "RooDataSet.h"
#include "RooDataHist.h"
#include "RooCategory.h"
#include "RooGaussian.h"
#include "RooConstVar.h"
#include "TCanvas.h"
#include "TAxis.h"
#include "RooPlot.h"
#include "TH1.h"
#include "TTree.h"
#include "TRandom.h"
using namespace RooFit ;
TH1* makeTH1(const char* name, Double_t mean, Double_t sigma) ;
TTree* makeTTree() ;
void rf401_importttreethx()
{
// I m p o r t m u l t i p l e T H 1 i n t o a R o o D a t a H i s t
// --------------------------------------------------------------------------
// Create thee ROOT TH1 histograms
TH1* hh_1 = makeTH1("hh1",0,3) ;
TH1* hh_2 = makeTH1("hh2",-3,1) ;
TH1* hh_3 = makeTH1("hh3",+3,4) ;
// Declare observable x
RooRealVar x("x","x",-10,10) ;
// Create category observable c that serves as index for the ROOT histograms
RooCategory c("c","c") ;
c.defineType("SampleA") ;
c.defineType("SampleB") ;
c.defineType("SampleC") ;
// Create a binned dataset that imports contents of all TH1 mapped by index category c
RooDataHist* dh = new RooDataHist("dh","dh",x,Index(c),Import("SampleA",*hh_1),Import("SampleB",*hh_2),Import("SampleC",*hh_3)) ;
dh->Print() ;
// Alternative constructor form for importing multiple histograms
map<string,TH1*> hmap ;
hmap["SampleA"] = hh_1 ;
hmap["SampleB"] = hh_2 ;
hmap["SampleC"] = hh_3 ;
RooDataHist* dh2 = new RooDataHist("dh","dh",x,c,hmap) ;
dh2->Print() ;
// I m p o r t i n g a T T r e e i n t o a R o o D a t a S e t w i t h c u t s
// -----------------------------------------------------------------------------------------
TTree* tree = makeTTree() ;
// Define observables y,z
RooRealVar y("y","y",-10,10) ;
RooRealVar z("z","z",-10,10) ;
// Import only observables (y,z)
RooDataSet ds("ds","ds",RooArgSet(x,y),Import(*tree)) ;
ds.Print() ;
// Import observables (x,y,z) but only event for which (y+z<0) is true
RooDataSet ds2("ds2","ds2",RooArgSet(x,y,z),Import(*tree),Cut("y+z<0")) ;
ds2.Print() ;
// I m p o r t i n g i n t e g e r T T r e e b r a n c h e s
// ---------------------------------------------------------------
// Import integer tree branch as RooRealVar
RooRealVar i("i","i",0,5) ;
RooDataSet ds3("ds3","ds3",RooArgSet(i,x),Import(*tree)) ;
ds3.Print() ;
// Define category i
RooCategory icat("i","i") ;
icat.defineType("State0",0) ;
icat.defineType("State1",1) ;
// Import integer tree branch as RooCategory (only events with i==0 and i==1
// will be imported as those are the only defined states)
RooDataSet ds4("ds4","ds4",RooArgSet(icat,x),Import(*tree)) ;
ds4.Print() ;
// I m p o r t m u l t i p l e R o o D a t a S e t s i n t o a R o o D a t a S e t
// ----------------------------------------------------------------------------------------
// Create three RooDataSets in (y,z)
RooDataSet* dsA = (RooDataSet*) ds2.reduce(RooArgSet(x,y),"z<-5") ;
RooDataSet* dsB = (RooDataSet*) ds2.reduce(RooArgSet(x,y),"abs(z)<5") ;
RooDataSet* dsC = (RooDataSet*) ds2.reduce(RooArgSet(x,y),"z>5") ;
// Create a dataset that imports contents of all the above datasets mapped by index category c
RooDataSet* dsABC = new RooDataSet("dsABC","dsABC",RooArgSet(x,y),Index(c),Import("SampleA",*dsA),Import("SampleB",*dsB),Import("SampleC",*dsC)) ;
dsABC->Print() ;
}
TH1* makeTH1(const char* name, Double_t mean, Double_t sigma)
{
// Create ROOT TH1 filled with a Gaussian distribution
TH1D* hh = new TH1D(name,name,100,-10,10) ;
for (int i=0 ; i<1000 ; i++) {
hh->Fill(gRandom->Gaus(mean,sigma)) ;
}
return hh ;
}
TTree* makeTTree()
{
// Create ROOT TTree filled with a Gaussian distribution in x and a uniform distribution in y
TTree* tree = new TTree("tree","tree") ;
Double_t* px = new Double_t ;
Double_t* py = new Double_t ;
Double_t* pz = new Double_t ;
Int_t* pi = new Int_t ;
tree->Branch("x",px,"x/D") ;
tree->Branch("y",py,"y/D") ;
tree->Branch("z",pz,"z/D") ;
tree->Branch("i",pi,"i/I") ;
for (int i=0 ; i<100 ; i++) {
*px = gRandom->Gaus(0,3) ;
*py = gRandom->Uniform()*30 - 15 ;
*pz = gRandom->Gaus(0,5) ;
*pi = i % 3 ;
tree->Fill() ;
}
return tree ;
}