ROOT logo
/*****************************************************************************
 * Project: RooFit                                                           *
 * Package: RooFitModels                                                     *
 * @(#)root/roofit:$Id: RooMultiVarGaussian.cxx 30333 2009-09-21 15:39:17Z wouter $
 * Authors:                                                                  *
 *   WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu       *
 *   DK, David Kirkby,    UC Irvine,         dkirkby@uci.edu                 *
 *                                                                           *
 * Copyright (c) 2000-2005, Regents of the University of California          *
 *                          and Stanford University. All rights reserved.    *
 *                                                                           *
 * Redistribution and use in source and binary forms,                        *
 * with or without modification, are permitted according to the terms        *
 * listed in LICENSE (http://roofit.sourceforge.net/license.txt)             *
 *****************************************************************************/

//////////////////////////////////////////////////////////////////////////////
//
// BEGIN_HTML
// Multivariate Gaussian p.d.f. with correlations
// END_HTML
//

#include "RooFit.h"

#include "Riostream.h"
#include <math.h>

#include "RooMultiVarGaussian.h"
#include "RooAbsReal.h"
#include "RooRealVar.h"
#include "RooRandom.h"
#include "RooMath.h"
#include "RooGlobalFunc.h"
#include "RooConstVar.h"
#include "TDecompChol.h"
#include "RooFitResult.h"

ClassImp(RooMultiVarGaussian)
  ;

//_____________________________________________________________________________
RooMultiVarGaussian::RooMultiVarGaussian(const char *name, const char *title,
					 const RooArgList& xvec, const RooArgList& mu, const TMatrixDSym& cov) :
  RooAbsPdf(name,title),
  _x("x","Observables",this,kTRUE,kFALSE),
  _mu("mu","Offset vector",this,kTRUE,kFALSE),
  _cov(cov),
  _covI(cov),
  _z(4)
{
 _x.add(xvec) ;

 _mu.add(mu) ;

 _det = _cov.Determinant() ;

 // Invert covariance matrix
 _covI.Invert() ;
}


//_____________________________________________________________________________
RooMultiVarGaussian::RooMultiVarGaussian(const char *name, const char *title,
					 const RooArgList& xvec, const RooFitResult& fr) :
  RooAbsPdf(name,title),
  _x("x","Observables",this,kTRUE,kFALSE),
  _mu("mu","Offset vector",this,kTRUE,kFALSE),
  _cov(fr.reducedCovarianceMatrix(xvec)),
  _covI(_cov),
  _z(4)
{
  _det = _cov.Determinant() ;

  // Fill mu vector with constant RooRealVars
  list<string> munames ;
  const RooArgList& fpf = fr.floatParsFinal() ;
  for (Int_t i=0 ; i<fpf.getSize() ; i++) {
    if (xvec.find(fpf.at(i)->GetName())) {
      RooRealVar* parclone = (RooRealVar*) fpf.at(i)->Clone(Form("%s_centralvalue",fpf.at(i)->GetName())) ;
      parclone->setConstant(kTRUE) ;
      _mu.addOwned(*parclone) ;              
      munames.push_back(fpf.at(i)->GetName()) ;
    }
  }
  
  // Fill X vector in same order as mu vector
  for (list<string>::iterator iter=munames.begin() ; iter!=munames.end() ; iter++) {
    RooRealVar* xvar = (RooRealVar*) xvec.find(iter->c_str()) ;
    _x.add(*xvar) ;      
  }

  // Invert covariance matrix
  _covI.Invert() ;

}


//_____________________________________________________________________________
RooMultiVarGaussian::RooMultiVarGaussian(const char *name, const char *title,
					 const RooArgList& xvec, const TVectorD& mu, const TMatrixDSym& cov) :
  RooAbsPdf(name,title),
  _x("x","Observables",this,kTRUE,kFALSE),
  _mu("mu","Offset vector",this,kTRUE,kFALSE),
  _cov(cov),
  _covI(cov),
  _z(4)
{
 _x.add(xvec) ;

 for (Int_t i=0 ; i<mu.GetNrows() ; i++) {
   _mu.add(RooFit::RooConst(mu(i))) ;
 }
   
 _det = _cov.Determinant() ;

 // Invert covariance matrix
 _covI.Invert() ;
}

//_____________________________________________________________________________
RooMultiVarGaussian::RooMultiVarGaussian(const char *name, const char *title,
					 const RooArgList& xvec, const TMatrixDSym& cov) :
  RooAbsPdf(name,title),
  _x("x","Observables",this,kTRUE,kFALSE),
  _mu("mu","Offset vector",this,kTRUE,kFALSE),
  _cov(cov),
  _covI(cov),
  _z(4)
{

 _x.add(xvec) ;

  for (Int_t i=0 ; i<xvec.getSize() ; i++) {
    _mu.add(RooFit::RooConst(0)) ;
  }
  
 _det = _cov.Determinant() ;

 // Invert covariance matrix
 _covI.Invert() ;
}



//_____________________________________________________________________________
RooMultiVarGaussian::RooMultiVarGaussian(const RooMultiVarGaussian& other, const char* name) : 
  RooAbsPdf(other,name), _x("x",this,other._x), _mu("mu",this,other._mu), 
  _cov(other._cov), _covI(other._covI), _det(other._det), _z(other._z)
{
}



//_____________________________________________________________________________
void RooMultiVarGaussian::syncMuVec() const 
{
  _muVec.ResizeTo(_mu.getSize()) ;
  for (Int_t i=0 ; i<_mu.getSize() ; i++) {
    _muVec[i] = ((RooAbsReal*)_mu.at(i))->getVal() ;
  }
}


//_____________________________________________________________________________
Double_t RooMultiVarGaussian::evaluate() const
{
  // Represent observables as vector
  TVectorD x(_x.getSize()) ;
  for (int i=0 ; i<_x.getSize() ; i++) {
    x[i] = ((RooAbsReal*)_x.at(i))->getVal() ;
  }

  // Calculate return value 
  syncMuVec() ;
  TVectorD x_min_mu = x - _muVec ;  

  Double_t alpha =  x_min_mu * (_covI * x_min_mu) ;
  return exp(-0.5*alpha) ;
}



//_____________________________________________________________________________
Int_t RooMultiVarGaussian::getAnalyticalIntegral(RooArgSet& allVars, RooArgSet& analVars, const char* rangeName) const 
{
  // Analytical integral known over all observables
  if (allVars.getSize()==_x.getSize() && !rangeName) {
    analVars.add(allVars) ;
    return -1 ;
  }

  Int_t code(0) ;

  Int_t nx = _x.getSize() ;
  if (nx>31) {
    // Warn that analytical integration is only provided for the first 31 observables
    coutW(Integration) << "RooMultiVarGaussian::getAnalyticalIntegral(" << GetName() << ") WARNING: p.d.f. has " << _x.getSize() 
		       << " observables, analytical integration is only implemented for the first 31 observables" << endl ;
    nx=31 ;
  }

  // Advertise partial analytical integral over all observables for which is wide enough to
  // use asymptotic integral calculation
  syncMuVec() ;
  for (int i=0 ; i<_x.getSize() ; i++) {
    // Check if integration over observable #i is requested
    if (allVars.find(_x.at(i)->GetName())) {
      // Check if range is wider than Z sigma 
      RooRealVar* xi = (RooRealVar*)_x.at(i) ;
      if (xi->getMin(rangeName)<_muVec(i)-_z*sqrt(_cov(i,i)) && xi->getMax(rangeName) > _muVec(i)+_z*sqrt(_cov(i,i))) {
	cxcoutD(Integration) << "RooMultiVarGaussian::getAnalyticalIntegral(" << GetName() 
			     << ") Advertising analytical integral over " << xi->GetName() << " as range is >" << _z << " sigma" << endl ;
	code |= (1<<i) ;
	analVars.add(*allVars.find(_x.at(i)->GetName())) ;
      } else {
	cxcoutD(Integration) << "RooMultiVarGaussian::getAnalyticalIntegral(" << GetName() << ") Range of " << xi->GetName() << " is <" 
			     << _z << " sigma, relying on numeric integral" << endl ;	
      }
    }
  }

  return code ;
}



//_____________________________________________________________________________
Double_t RooMultiVarGaussian::analyticalIntegral(Int_t code, const char* /*rangeName*/) const 
{
  // Handle full integral here
  if (code==-1) {
    return pow(2*3.14159268,_x.getSize()/2.)*sqrt(fabs(_det)) ;
  }

  // Handle partial integrals here
  
  // Retrieve |S22|, S22bar from cache
  AnaIntData& aid = anaIntData(code) ;
 
  // Fill position vector for non-integrated observables
  syncMuVec() ;
  TVectorD u(aid.pmap.size()) ;
  for (UInt_t i=0 ; i<aid.pmap.size() ; i++) {
    u(i) = ((RooAbsReal*)_x.at(aid.pmap[i]))->getVal() - _muVec(aid.pmap[i]) ;
  }

  // Calculate partial integral
  Double_t ret = pow(2*3.14159268,aid.nint/2.)/sqrt(fabs(aid.S22det))*exp(-0.5*u*(aid.S22bar*u)) ;

  return ret ;
}



//_____________________________________________________________________________
RooMultiVarGaussian::AnaIntData& RooMultiVarGaussian::anaIntData(Int_t code) const 
{
  // Check if cache entry was previously created
  map<int,AnaIntData>::iterator iter =  _anaIntCache.find(code) ;
  if (iter != _anaIntCache.end()) {
    return iter->second ;
  }

  // Calculate cache contents  

  // Decode integration code
  vector<int> map1,map2 ;
  decodeCode(code,map1,map2) ;
  
  // Rearrage observables so that all non-integrated observables
  // go first (preserving relative order) and all integrated observables
  // go last (preserving relative order)
  TMatrixDSym S11, S22 ;
  TMatrixD S12, S21 ;
  blockDecompose(_covI,map1,map2,S11,S12,S21,S22) ;

  // Begin calculation of partial integrals
  //                                          ___
  //      sqrt(2pi)^(#intObs)     (-0.5 * u1T S22 u1 )
  // I =  ------------------- * e
  //        sqrt(|det(S22)|)
  //                                                                        ___
  // Where S22 is the sub-matrix of covI for the integrated observables and S22
  // is the Schur complement of S22
  // ___                   -1
  // S22  = S11 - S12 * S22   * S21
  //
  // and u1 is the vector of non-integrated observables

  // Calculate Schur complement S22bar
  TMatrixD S22inv(S22) ;
  S22inv.Invert() ;  
  TMatrixD S22bar = S11 - S12*S22inv*S21 ;  

  // Create new cache entry
  AnaIntData& cacheData = _anaIntCache[code] ;
  cacheData.S22bar.ResizeTo(S22bar) ;
  cacheData.S22bar=S22bar ;
  cacheData.S22det= S22.Determinant() ;
  cacheData.pmap = map1  ;
  cacheData.nint = map2.size() ;

  return cacheData ;
}



//_____________________________________________________________________________
Int_t RooMultiVarGaussian::getGenerator(const RooArgSet& directVars, RooArgSet &generateVars, Bool_t /*staticInitOK*/) const
{
  // Special case: generate all observables
  if (directVars.getSize()==_x.getSize()) {
    generateVars.add(directVars) ;
    return -1 ;
  }

  Int_t nx = _x.getSize() ;
  if (nx>31) {
    // Warn that analytical integration is only provided for the first 31 observables
    coutW(Integration) << "RooMultiVarGaussian::getGenerator(" << GetName() << ") WARNING: p.d.f. has " << _x.getSize() 
		       << " observables, partial internal generation is only implemented for the first 31 observables" << endl ;
    nx=31 ;
  }

  // Advertise partial generation over all permutations of observables
  Int_t code(0) ;
  for (int i=0 ; i<_x.getSize() ; i++) {    
    RooAbsArg* arg = directVars.find(_x.at(i)->GetName()) ;
    if (arg) {
      code |= (1<<i) ;
      generateVars.add(*arg) ;
    }
  }
  
  return code ;
}



//_____________________________________________________________________________
void RooMultiVarGaussian::initGenerator(Int_t /*code*/)
{
  // Clear the GenData cache as its content is not invariant under changes in
  // the mu vector. 
  _genCache.clear() ;
  
}




//_____________________________________________________________________________
void RooMultiVarGaussian::generateEvent(Int_t code)
{
  // Retrieve generator config from cache
  GenData& gd = genData(code) ;
  TMatrixD& TU = gd.UT ;
  Int_t nobs = TU.GetNcols() ;
  vector<int>& omap = gd.omap ; 

  while(1) {

    // Create unit Gaussian vector 
    TVectorD xgen(nobs);
    for(Int_t k= 0; k <nobs; k++) {
      xgen(k)= RooRandom::gaussian();
    }
    
    // Apply transformation matrix
    xgen *= TU ;

    // Apply shift
    if (code == -1) {

      // Simple shift if we generate all observables
      xgen += gd.mu1 ;

    } else {

      // Non-generated observable dependent shift for partial generations

      // mubar  = mu1 + S12 S22Inv ( x2 - mu2)
      TVectorD mubar(gd.mu1) ;
      TVectorD x2(gd.pmap.size()) ;
      for (UInt_t i=0 ; i<gd.pmap.size() ; i++) {
	x2(i) = ((RooAbsReal*)_x.at(gd.pmap[i]))->getVal() ;
      }
      mubar += gd.S12S22I * (x2 - gd.mu2) ;      

      xgen += mubar ;    

    }

    // Transfer values and check if values are in range
    Bool_t ok(kTRUE) ;
    for (int i=0 ; i<nobs ; i++) {
      RooRealVar* xi = (RooRealVar*)_x.at(omap[i]) ;      
      if (xgen(i)<xi->getMin() || xgen(i)>xi->getMax()) {
	ok = kFALSE ;
	break ;
      } else {
	xi->setVal(xgen(i)) ;
      }
    }

    // If all values are in range, accept event and return
    // otherwise retry
    if (ok) {
      break ;
    }
  }

  return;
}



//_____________________________________________________________________________
RooMultiVarGaussian::GenData& RooMultiVarGaussian::genData(Int_t code) const 
{
  // WVE -- CHECK THAT GENDATA IS VALID GIVEN CURRENT VALUES OF _MU

  // Check if cache entry was previously created
  map<int,GenData>::iterator iter =  _genCache.find(code) ;
  if (iter != _genCache.end()) {
    return iter->second ;
  }

  // Create new entry
  GenData& cacheData = _genCache[code] ;

  if (code==-1) {

    // Do eigen value decomposition
    TDecompChol tdc(_cov) ;
    tdc.Decompose() ;
    TMatrixD U = tdc.GetU() ;
    TMatrixD TU(TMatrixD::kTransposed,U) ;    

    // Fill cache data
    cacheData.UT.ResizeTo(TU) ;
    cacheData.UT = TU ;    
    cacheData.omap.resize(_x.getSize()) ;
    for (int i=0 ; i<_x.getSize() ; i++) {
      cacheData.omap[i] = i ;
    }    
    syncMuVec() ;
    cacheData.mu1.ResizeTo(_muVec) ;
    cacheData.mu1 = _muVec ;

  } else {

    // Construct observables: map1 = generated, map2 = given
    vector<int> map1, map2 ;
    decodeCode(code,map2,map1) ;

    // Do block decomposition of covariance matrix
    TMatrixDSym S11, S22 ;
    TMatrixD S12, S21 ;
    blockDecompose(_cov,map1,map2,S11,S12,S21,S22) ;        
    
    // Constructed conditional matrix form
    //                                             -1
    // F(X1|X2) --> CovI --> S22bar = S11 - S12 S22  S21
    //                                             -1
    //          --> mu   --> mubar  = mu1 + S12 S22  ( x2 - mu2)

    // Do eigenvalue decomposition
    TMatrixD S22Inv(TMatrixD::kInverted,S22) ;
    TMatrixD S22bar =  S11 - S12 * (S22Inv * S21) ;

    // Do eigen value decomposition of S22bar
    TDecompChol tdc(S22bar) ;
    tdc.Decompose() ;
    TMatrixD U = tdc.GetU() ;
    TMatrixD TU(TMatrixD::kTransposed,U) ;    

    // Split mu vector into mu1 and mu2
    TVectorD mu1(map1.size()),mu2(map2.size()) ;
    syncMuVec() ;
    for (UInt_t i=0 ; i<map1.size() ; i++) {
      mu1(i) = _muVec(map1[i]) ;
    }
    for (UInt_t i=0 ; i<map2.size() ; i++) {
      mu2(i) = _muVec(map2[i]) ;
    }

    // Calculate rotation matrix for mu vector
    TMatrixD S12S22Inv = S12 * S22Inv ;

    // Fill cache data
    cacheData.UT.ResizeTo(TU) ;
    cacheData.UT = TU ;    
    cacheData.omap = map1 ;
    cacheData.pmap = map2 ;
    cacheData.mu1.ResizeTo(mu1) ;
    cacheData.mu2.ResizeTo(mu2) ;
    cacheData.mu1 = mu1 ;
    cacheData.mu2 = mu2 ;    
    cacheData.S12S22I.ResizeTo(S12S22Inv) ;
    cacheData.S12S22I = S12S22Inv ;
    
  }


  return cacheData ;
}




//_____________________________________________________________________________
void RooMultiVarGaussian::decodeCode(Int_t code, vector<int>& map1, vector<int>& map2) const
{
  // Decode analytical integration/generation code into index map of integrated/generated (map2)
  // and non-integrated/generated observables (map1)
  map1.clear() ;
  map2.clear() ;
  for (int i=0 ; i<_x.getSize() ; i++) {
    if (code & (1<<i)) {
      map2.push_back(i) ;
    } else {
      map1.push_back(i) ;
    }
  }
}


//_____________________________________________________________________________
void RooMultiVarGaussian::blockDecompose(const TMatrixD& input, const vector<int>& map1, const vector<int>& map2, TMatrixDSym& S11, TMatrixD& S12, TMatrixD& S21, TMatrixDSym& S22)
{
  // Block decomposition of covI according to given maps of observables

  // Allocate and fill reordered covI matrix in 2x2 block structure

  S11.ResizeTo(map1.size(),map1.size()) ; 
  S12.ResizeTo(map1.size(),map2.size()) ;
  S21.ResizeTo(map2.size(),map1.size()) ;
  S22.ResizeTo(map2.size(),map2.size()) ;

  for (UInt_t i=0 ; i<map1.size() ; i++) {
    for (UInt_t j=0 ; j<map1.size() ; j++) 
      S11(i,j) = input(map1[i],map1[j]) ;
    for (UInt_t j=0 ; j<map2.size() ; j++) 
      S12(i,j) = input(map1[i],map2[j]) ;
  }
  for (UInt_t i=0 ; i<map2.size() ; i++) {
    for (UInt_t j=0 ; j<map1.size() ; j++) 
      S21(i,j) = input(map2[i],map1[j]) ;
    for (UInt_t j=0 ; j<map2.size() ; j++) 
      S22(i,j) = input(map2[i],map2[j]) ;
  }
  
}







 RooMultiVarGaussian.cxx:1
 RooMultiVarGaussian.cxx:2
 RooMultiVarGaussian.cxx:3
 RooMultiVarGaussian.cxx:4
 RooMultiVarGaussian.cxx:5
 RooMultiVarGaussian.cxx:6
 RooMultiVarGaussian.cxx:7
 RooMultiVarGaussian.cxx:8
 RooMultiVarGaussian.cxx:9
 RooMultiVarGaussian.cxx:10
 RooMultiVarGaussian.cxx:11
 RooMultiVarGaussian.cxx:12
 RooMultiVarGaussian.cxx:13
 RooMultiVarGaussian.cxx:14
 RooMultiVarGaussian.cxx:15
 RooMultiVarGaussian.cxx:16
 RooMultiVarGaussian.cxx:17
 RooMultiVarGaussian.cxx:18
 RooMultiVarGaussian.cxx:19
 RooMultiVarGaussian.cxx:20
 RooMultiVarGaussian.cxx:21
 RooMultiVarGaussian.cxx:22
 RooMultiVarGaussian.cxx:23
 RooMultiVarGaussian.cxx:24
 RooMultiVarGaussian.cxx:25
 RooMultiVarGaussian.cxx:26
 RooMultiVarGaussian.cxx:27
 RooMultiVarGaussian.cxx:28
 RooMultiVarGaussian.cxx:29
 RooMultiVarGaussian.cxx:30
 RooMultiVarGaussian.cxx:31
 RooMultiVarGaussian.cxx:32
 RooMultiVarGaussian.cxx:33
 RooMultiVarGaussian.cxx:34
 RooMultiVarGaussian.cxx:35
 RooMultiVarGaussian.cxx:36
 RooMultiVarGaussian.cxx:37
 RooMultiVarGaussian.cxx:38
 RooMultiVarGaussian.cxx:39
 RooMultiVarGaussian.cxx:40
 RooMultiVarGaussian.cxx:41
 RooMultiVarGaussian.cxx:42
 RooMultiVarGaussian.cxx:43
 RooMultiVarGaussian.cxx:44
 RooMultiVarGaussian.cxx:45
 RooMultiVarGaussian.cxx:46
 RooMultiVarGaussian.cxx:47
 RooMultiVarGaussian.cxx:48
 RooMultiVarGaussian.cxx:49
 RooMultiVarGaussian.cxx:50
 RooMultiVarGaussian.cxx:51
 RooMultiVarGaussian.cxx:52
 RooMultiVarGaussian.cxx:53
 RooMultiVarGaussian.cxx:54
 RooMultiVarGaussian.cxx:55
 RooMultiVarGaussian.cxx:56
 RooMultiVarGaussian.cxx:57
 RooMultiVarGaussian.cxx:58
 RooMultiVarGaussian.cxx:59
 RooMultiVarGaussian.cxx:60
 RooMultiVarGaussian.cxx:61
 RooMultiVarGaussian.cxx:62
 RooMultiVarGaussian.cxx:63
 RooMultiVarGaussian.cxx:64
 RooMultiVarGaussian.cxx:65
 RooMultiVarGaussian.cxx:66
 RooMultiVarGaussian.cxx:67
 RooMultiVarGaussian.cxx:68
 RooMultiVarGaussian.cxx:69
 RooMultiVarGaussian.cxx:70
 RooMultiVarGaussian.cxx:71
 RooMultiVarGaussian.cxx:72
 RooMultiVarGaussian.cxx:73
 RooMultiVarGaussian.cxx:74
 RooMultiVarGaussian.cxx:75
 RooMultiVarGaussian.cxx:76
 RooMultiVarGaussian.cxx:77
 RooMultiVarGaussian.cxx:78
 RooMultiVarGaussian.cxx:79
 RooMultiVarGaussian.cxx:80
 RooMultiVarGaussian.cxx:81
 RooMultiVarGaussian.cxx:82
 RooMultiVarGaussian.cxx:83
 RooMultiVarGaussian.cxx:84
 RooMultiVarGaussian.cxx:85
 RooMultiVarGaussian.cxx:86
 RooMultiVarGaussian.cxx:87
 RooMultiVarGaussian.cxx:88
 RooMultiVarGaussian.cxx:89
 RooMultiVarGaussian.cxx:90
 RooMultiVarGaussian.cxx:91
 RooMultiVarGaussian.cxx:92
 RooMultiVarGaussian.cxx:93
 RooMultiVarGaussian.cxx:94
 RooMultiVarGaussian.cxx:95
 RooMultiVarGaussian.cxx:96
 RooMultiVarGaussian.cxx:97
 RooMultiVarGaussian.cxx:98
 RooMultiVarGaussian.cxx:99
 RooMultiVarGaussian.cxx:100
 RooMultiVarGaussian.cxx:101
 RooMultiVarGaussian.cxx:102
 RooMultiVarGaussian.cxx:103
 RooMultiVarGaussian.cxx:104
 RooMultiVarGaussian.cxx:105
 RooMultiVarGaussian.cxx:106
 RooMultiVarGaussian.cxx:107
 RooMultiVarGaussian.cxx:108
 RooMultiVarGaussian.cxx:109
 RooMultiVarGaussian.cxx:110
 RooMultiVarGaussian.cxx:111
 RooMultiVarGaussian.cxx:112
 RooMultiVarGaussian.cxx:113
 RooMultiVarGaussian.cxx:114
 RooMultiVarGaussian.cxx:115
 RooMultiVarGaussian.cxx:116
 RooMultiVarGaussian.cxx:117
 RooMultiVarGaussian.cxx:118
 RooMultiVarGaussian.cxx:119
 RooMultiVarGaussian.cxx:120
 RooMultiVarGaussian.cxx:121
 RooMultiVarGaussian.cxx:122
 RooMultiVarGaussian.cxx:123
 RooMultiVarGaussian.cxx:124
 RooMultiVarGaussian.cxx:125
 RooMultiVarGaussian.cxx:126
 RooMultiVarGaussian.cxx:127
 RooMultiVarGaussian.cxx:128
 RooMultiVarGaussian.cxx:129
 RooMultiVarGaussian.cxx:130
 RooMultiVarGaussian.cxx:131
 RooMultiVarGaussian.cxx:132
 RooMultiVarGaussian.cxx:133
 RooMultiVarGaussian.cxx:134
 RooMultiVarGaussian.cxx:135
 RooMultiVarGaussian.cxx:136
 RooMultiVarGaussian.cxx:137
 RooMultiVarGaussian.cxx:138
 RooMultiVarGaussian.cxx:139
 RooMultiVarGaussian.cxx:140
 RooMultiVarGaussian.cxx:141
 RooMultiVarGaussian.cxx:142
 RooMultiVarGaussian.cxx:143
 RooMultiVarGaussian.cxx:144
 RooMultiVarGaussian.cxx:145
 RooMultiVarGaussian.cxx:146
 RooMultiVarGaussian.cxx:147
 RooMultiVarGaussian.cxx:148
 RooMultiVarGaussian.cxx:149
 RooMultiVarGaussian.cxx:150
 RooMultiVarGaussian.cxx:151
 RooMultiVarGaussian.cxx:152
 RooMultiVarGaussian.cxx:153
 RooMultiVarGaussian.cxx:154
 RooMultiVarGaussian.cxx:155
 RooMultiVarGaussian.cxx:156
 RooMultiVarGaussian.cxx:157
 RooMultiVarGaussian.cxx:158
 RooMultiVarGaussian.cxx:159
 RooMultiVarGaussian.cxx:160
 RooMultiVarGaussian.cxx:161
 RooMultiVarGaussian.cxx:162
 RooMultiVarGaussian.cxx:163
 RooMultiVarGaussian.cxx:164
 RooMultiVarGaussian.cxx:165
 RooMultiVarGaussian.cxx:166
 RooMultiVarGaussian.cxx:167
 RooMultiVarGaussian.cxx:168
 RooMultiVarGaussian.cxx:169
 RooMultiVarGaussian.cxx:170
 RooMultiVarGaussian.cxx:171
 RooMultiVarGaussian.cxx:172
 RooMultiVarGaussian.cxx:173
 RooMultiVarGaussian.cxx:174
 RooMultiVarGaussian.cxx:175
 RooMultiVarGaussian.cxx:176
 RooMultiVarGaussian.cxx:177
 RooMultiVarGaussian.cxx:178
 RooMultiVarGaussian.cxx:179
 RooMultiVarGaussian.cxx:180
 RooMultiVarGaussian.cxx:181
 RooMultiVarGaussian.cxx:182
 RooMultiVarGaussian.cxx:183
 RooMultiVarGaussian.cxx:184
 RooMultiVarGaussian.cxx:185
 RooMultiVarGaussian.cxx:186
 RooMultiVarGaussian.cxx:187
 RooMultiVarGaussian.cxx:188
 RooMultiVarGaussian.cxx:189
 RooMultiVarGaussian.cxx:190
 RooMultiVarGaussian.cxx:191
 RooMultiVarGaussian.cxx:192
 RooMultiVarGaussian.cxx:193
 RooMultiVarGaussian.cxx:194
 RooMultiVarGaussian.cxx:195
 RooMultiVarGaussian.cxx:196
 RooMultiVarGaussian.cxx:197
 RooMultiVarGaussian.cxx:198
 RooMultiVarGaussian.cxx:199
 RooMultiVarGaussian.cxx:200
 RooMultiVarGaussian.cxx:201
 RooMultiVarGaussian.cxx:202
 RooMultiVarGaussian.cxx:203
 RooMultiVarGaussian.cxx:204
 RooMultiVarGaussian.cxx:205
 RooMultiVarGaussian.cxx:206
 RooMultiVarGaussian.cxx:207
 RooMultiVarGaussian.cxx:208
 RooMultiVarGaussian.cxx:209
 RooMultiVarGaussian.cxx:210
 RooMultiVarGaussian.cxx:211
 RooMultiVarGaussian.cxx:212
 RooMultiVarGaussian.cxx:213
 RooMultiVarGaussian.cxx:214
 RooMultiVarGaussian.cxx:215
 RooMultiVarGaussian.cxx:216
 RooMultiVarGaussian.cxx:217
 RooMultiVarGaussian.cxx:218
 RooMultiVarGaussian.cxx:219
 RooMultiVarGaussian.cxx:220
 RooMultiVarGaussian.cxx:221
 RooMultiVarGaussian.cxx:222
 RooMultiVarGaussian.cxx:223
 RooMultiVarGaussian.cxx:224
 RooMultiVarGaussian.cxx:225
 RooMultiVarGaussian.cxx:226
 RooMultiVarGaussian.cxx:227
 RooMultiVarGaussian.cxx:228
 RooMultiVarGaussian.cxx:229
 RooMultiVarGaussian.cxx:230
 RooMultiVarGaussian.cxx:231
 RooMultiVarGaussian.cxx:232
 RooMultiVarGaussian.cxx:233
 RooMultiVarGaussian.cxx:234
 RooMultiVarGaussian.cxx:235
 RooMultiVarGaussian.cxx:236
 RooMultiVarGaussian.cxx:237
 RooMultiVarGaussian.cxx:238
 RooMultiVarGaussian.cxx:239
 RooMultiVarGaussian.cxx:240
 RooMultiVarGaussian.cxx:241
 RooMultiVarGaussian.cxx:242
 RooMultiVarGaussian.cxx:243
 RooMultiVarGaussian.cxx:244
 RooMultiVarGaussian.cxx:245
 RooMultiVarGaussian.cxx:246
 RooMultiVarGaussian.cxx:247
 RooMultiVarGaussian.cxx:248
 RooMultiVarGaussian.cxx:249
 RooMultiVarGaussian.cxx:250
 RooMultiVarGaussian.cxx:251
 RooMultiVarGaussian.cxx:252
 RooMultiVarGaussian.cxx:253
 RooMultiVarGaussian.cxx:254
 RooMultiVarGaussian.cxx:255
 RooMultiVarGaussian.cxx:256
 RooMultiVarGaussian.cxx:257
 RooMultiVarGaussian.cxx:258
 RooMultiVarGaussian.cxx:259
 RooMultiVarGaussian.cxx:260
 RooMultiVarGaussian.cxx:261
 RooMultiVarGaussian.cxx:262
 RooMultiVarGaussian.cxx:263
 RooMultiVarGaussian.cxx:264
 RooMultiVarGaussian.cxx:265
 RooMultiVarGaussian.cxx:266
 RooMultiVarGaussian.cxx:267
 RooMultiVarGaussian.cxx:268
 RooMultiVarGaussian.cxx:269
 RooMultiVarGaussian.cxx:270
 RooMultiVarGaussian.cxx:271
 RooMultiVarGaussian.cxx:272
 RooMultiVarGaussian.cxx:273
 RooMultiVarGaussian.cxx:274
 RooMultiVarGaussian.cxx:275
 RooMultiVarGaussian.cxx:276
 RooMultiVarGaussian.cxx:277
 RooMultiVarGaussian.cxx:278
 RooMultiVarGaussian.cxx:279
 RooMultiVarGaussian.cxx:280
 RooMultiVarGaussian.cxx:281
 RooMultiVarGaussian.cxx:282
 RooMultiVarGaussian.cxx:283
 RooMultiVarGaussian.cxx:284
 RooMultiVarGaussian.cxx:285
 RooMultiVarGaussian.cxx:286
 RooMultiVarGaussian.cxx:287
 RooMultiVarGaussian.cxx:288
 RooMultiVarGaussian.cxx:289
 RooMultiVarGaussian.cxx:290
 RooMultiVarGaussian.cxx:291
 RooMultiVarGaussian.cxx:292
 RooMultiVarGaussian.cxx:293
 RooMultiVarGaussian.cxx:294
 RooMultiVarGaussian.cxx:295
 RooMultiVarGaussian.cxx:296
 RooMultiVarGaussian.cxx:297
 RooMultiVarGaussian.cxx:298
 RooMultiVarGaussian.cxx:299
 RooMultiVarGaussian.cxx:300
 RooMultiVarGaussian.cxx:301
 RooMultiVarGaussian.cxx:302
 RooMultiVarGaussian.cxx:303
 RooMultiVarGaussian.cxx:304
 RooMultiVarGaussian.cxx:305
 RooMultiVarGaussian.cxx:306
 RooMultiVarGaussian.cxx:307
 RooMultiVarGaussian.cxx:308
 RooMultiVarGaussian.cxx:309
 RooMultiVarGaussian.cxx:310
 RooMultiVarGaussian.cxx:311
 RooMultiVarGaussian.cxx:312
 RooMultiVarGaussian.cxx:313
 RooMultiVarGaussian.cxx:314
 RooMultiVarGaussian.cxx:315
 RooMultiVarGaussian.cxx:316
 RooMultiVarGaussian.cxx:317
 RooMultiVarGaussian.cxx:318
 RooMultiVarGaussian.cxx:319
 RooMultiVarGaussian.cxx:320
 RooMultiVarGaussian.cxx:321
 RooMultiVarGaussian.cxx:322
 RooMultiVarGaussian.cxx:323
 RooMultiVarGaussian.cxx:324
 RooMultiVarGaussian.cxx:325
 RooMultiVarGaussian.cxx:326
 RooMultiVarGaussian.cxx:327
 RooMultiVarGaussian.cxx:328
 RooMultiVarGaussian.cxx:329
 RooMultiVarGaussian.cxx:330
 RooMultiVarGaussian.cxx:331
 RooMultiVarGaussian.cxx:332
 RooMultiVarGaussian.cxx:333
 RooMultiVarGaussian.cxx:334
 RooMultiVarGaussian.cxx:335
 RooMultiVarGaussian.cxx:336
 RooMultiVarGaussian.cxx:337
 RooMultiVarGaussian.cxx:338
 RooMultiVarGaussian.cxx:339
 RooMultiVarGaussian.cxx:340
 RooMultiVarGaussian.cxx:341
 RooMultiVarGaussian.cxx:342
 RooMultiVarGaussian.cxx:343
 RooMultiVarGaussian.cxx:344
 RooMultiVarGaussian.cxx:345
 RooMultiVarGaussian.cxx:346
 RooMultiVarGaussian.cxx:347
 RooMultiVarGaussian.cxx:348
 RooMultiVarGaussian.cxx:349
 RooMultiVarGaussian.cxx:350
 RooMultiVarGaussian.cxx:351
 RooMultiVarGaussian.cxx:352
 RooMultiVarGaussian.cxx:353
 RooMultiVarGaussian.cxx:354
 RooMultiVarGaussian.cxx:355
 RooMultiVarGaussian.cxx:356
 RooMultiVarGaussian.cxx:357
 RooMultiVarGaussian.cxx:358
 RooMultiVarGaussian.cxx:359
 RooMultiVarGaussian.cxx:360
 RooMultiVarGaussian.cxx:361
 RooMultiVarGaussian.cxx:362
 RooMultiVarGaussian.cxx:363
 RooMultiVarGaussian.cxx:364
 RooMultiVarGaussian.cxx:365
 RooMultiVarGaussian.cxx:366
 RooMultiVarGaussian.cxx:367
 RooMultiVarGaussian.cxx:368
 RooMultiVarGaussian.cxx:369
 RooMultiVarGaussian.cxx:370
 RooMultiVarGaussian.cxx:371
 RooMultiVarGaussian.cxx:372
 RooMultiVarGaussian.cxx:373
 RooMultiVarGaussian.cxx:374
 RooMultiVarGaussian.cxx:375
 RooMultiVarGaussian.cxx:376
 RooMultiVarGaussian.cxx:377
 RooMultiVarGaussian.cxx:378
 RooMultiVarGaussian.cxx:379
 RooMultiVarGaussian.cxx:380
 RooMultiVarGaussian.cxx:381
 RooMultiVarGaussian.cxx:382
 RooMultiVarGaussian.cxx:383
 RooMultiVarGaussian.cxx:384
 RooMultiVarGaussian.cxx:385
 RooMultiVarGaussian.cxx:386
 RooMultiVarGaussian.cxx:387
 RooMultiVarGaussian.cxx:388
 RooMultiVarGaussian.cxx:389
 RooMultiVarGaussian.cxx:390
 RooMultiVarGaussian.cxx:391
 RooMultiVarGaussian.cxx:392
 RooMultiVarGaussian.cxx:393
 RooMultiVarGaussian.cxx:394
 RooMultiVarGaussian.cxx:395
 RooMultiVarGaussian.cxx:396
 RooMultiVarGaussian.cxx:397
 RooMultiVarGaussian.cxx:398
 RooMultiVarGaussian.cxx:399
 RooMultiVarGaussian.cxx:400
 RooMultiVarGaussian.cxx:401
 RooMultiVarGaussian.cxx:402
 RooMultiVarGaussian.cxx:403
 RooMultiVarGaussian.cxx:404
 RooMultiVarGaussian.cxx:405
 RooMultiVarGaussian.cxx:406
 RooMultiVarGaussian.cxx:407
 RooMultiVarGaussian.cxx:408
 RooMultiVarGaussian.cxx:409
 RooMultiVarGaussian.cxx:410
 RooMultiVarGaussian.cxx:411
 RooMultiVarGaussian.cxx:412
 RooMultiVarGaussian.cxx:413
 RooMultiVarGaussian.cxx:414
 RooMultiVarGaussian.cxx:415
 RooMultiVarGaussian.cxx:416
 RooMultiVarGaussian.cxx:417
 RooMultiVarGaussian.cxx:418
 RooMultiVarGaussian.cxx:419
 RooMultiVarGaussian.cxx:420
 RooMultiVarGaussian.cxx:421
 RooMultiVarGaussian.cxx:422
 RooMultiVarGaussian.cxx:423
 RooMultiVarGaussian.cxx:424
 RooMultiVarGaussian.cxx:425
 RooMultiVarGaussian.cxx:426
 RooMultiVarGaussian.cxx:427
 RooMultiVarGaussian.cxx:428
 RooMultiVarGaussian.cxx:429
 RooMultiVarGaussian.cxx:430
 RooMultiVarGaussian.cxx:431
 RooMultiVarGaussian.cxx:432
 RooMultiVarGaussian.cxx:433
 RooMultiVarGaussian.cxx:434
 RooMultiVarGaussian.cxx:435
 RooMultiVarGaussian.cxx:436
 RooMultiVarGaussian.cxx:437
 RooMultiVarGaussian.cxx:438
 RooMultiVarGaussian.cxx:439
 RooMultiVarGaussian.cxx:440
 RooMultiVarGaussian.cxx:441
 RooMultiVarGaussian.cxx:442
 RooMultiVarGaussian.cxx:443
 RooMultiVarGaussian.cxx:444
 RooMultiVarGaussian.cxx:445
 RooMultiVarGaussian.cxx:446
 RooMultiVarGaussian.cxx:447
 RooMultiVarGaussian.cxx:448
 RooMultiVarGaussian.cxx:449
 RooMultiVarGaussian.cxx:450
 RooMultiVarGaussian.cxx:451
 RooMultiVarGaussian.cxx:452
 RooMultiVarGaussian.cxx:453
 RooMultiVarGaussian.cxx:454
 RooMultiVarGaussian.cxx:455
 RooMultiVarGaussian.cxx:456
 RooMultiVarGaussian.cxx:457
 RooMultiVarGaussian.cxx:458
 RooMultiVarGaussian.cxx:459
 RooMultiVarGaussian.cxx:460
 RooMultiVarGaussian.cxx:461
 RooMultiVarGaussian.cxx:462
 RooMultiVarGaussian.cxx:463
 RooMultiVarGaussian.cxx:464
 RooMultiVarGaussian.cxx:465
 RooMultiVarGaussian.cxx:466
 RooMultiVarGaussian.cxx:467
 RooMultiVarGaussian.cxx:468
 RooMultiVarGaussian.cxx:469
 RooMultiVarGaussian.cxx:470
 RooMultiVarGaussian.cxx:471
 RooMultiVarGaussian.cxx:472
 RooMultiVarGaussian.cxx:473
 RooMultiVarGaussian.cxx:474
 RooMultiVarGaussian.cxx:475
 RooMultiVarGaussian.cxx:476
 RooMultiVarGaussian.cxx:477
 RooMultiVarGaussian.cxx:478
 RooMultiVarGaussian.cxx:479
 RooMultiVarGaussian.cxx:480
 RooMultiVarGaussian.cxx:481
 RooMultiVarGaussian.cxx:482
 RooMultiVarGaussian.cxx:483
 RooMultiVarGaussian.cxx:484
 RooMultiVarGaussian.cxx:485
 RooMultiVarGaussian.cxx:486
 RooMultiVarGaussian.cxx:487
 RooMultiVarGaussian.cxx:488
 RooMultiVarGaussian.cxx:489
 RooMultiVarGaussian.cxx:490
 RooMultiVarGaussian.cxx:491
 RooMultiVarGaussian.cxx:492
 RooMultiVarGaussian.cxx:493
 RooMultiVarGaussian.cxx:494
 RooMultiVarGaussian.cxx:495
 RooMultiVarGaussian.cxx:496
 RooMultiVarGaussian.cxx:497
 RooMultiVarGaussian.cxx:498
 RooMultiVarGaussian.cxx:499
 RooMultiVarGaussian.cxx:500
 RooMultiVarGaussian.cxx:501
 RooMultiVarGaussian.cxx:502
 RooMultiVarGaussian.cxx:503
 RooMultiVarGaussian.cxx:504
 RooMultiVarGaussian.cxx:505
 RooMultiVarGaussian.cxx:506
 RooMultiVarGaussian.cxx:507
 RooMultiVarGaussian.cxx:508
 RooMultiVarGaussian.cxx:509
 RooMultiVarGaussian.cxx:510
 RooMultiVarGaussian.cxx:511
 RooMultiVarGaussian.cxx:512
 RooMultiVarGaussian.cxx:513
 RooMultiVarGaussian.cxx:514
 RooMultiVarGaussian.cxx:515
 RooMultiVarGaussian.cxx:516
 RooMultiVarGaussian.cxx:517
 RooMultiVarGaussian.cxx:518
 RooMultiVarGaussian.cxx:519
 RooMultiVarGaussian.cxx:520
 RooMultiVarGaussian.cxx:521
 RooMultiVarGaussian.cxx:522
 RooMultiVarGaussian.cxx:523
 RooMultiVarGaussian.cxx:524
 RooMultiVarGaussian.cxx:525
 RooMultiVarGaussian.cxx:526
 RooMultiVarGaussian.cxx:527
 RooMultiVarGaussian.cxx:528
 RooMultiVarGaussian.cxx:529
 RooMultiVarGaussian.cxx:530
 RooMultiVarGaussian.cxx:531
 RooMultiVarGaussian.cxx:532
 RooMultiVarGaussian.cxx:533
 RooMultiVarGaussian.cxx:534
 RooMultiVarGaussian.cxx:535
 RooMultiVarGaussian.cxx:536
 RooMultiVarGaussian.cxx:537
 RooMultiVarGaussian.cxx:538
 RooMultiVarGaussian.cxx:539
 RooMultiVarGaussian.cxx:540
 RooMultiVarGaussian.cxx:541
 RooMultiVarGaussian.cxx:542
 RooMultiVarGaussian.cxx:543
 RooMultiVarGaussian.cxx:544
 RooMultiVarGaussian.cxx:545
 RooMultiVarGaussian.cxx:546
 RooMultiVarGaussian.cxx:547
 RooMultiVarGaussian.cxx:548
 RooMultiVarGaussian.cxx:549
 RooMultiVarGaussian.cxx:550
 RooMultiVarGaussian.cxx:551
 RooMultiVarGaussian.cxx:552
 RooMultiVarGaussian.cxx:553
 RooMultiVarGaussian.cxx:554
 RooMultiVarGaussian.cxx:555
 RooMultiVarGaussian.cxx:556
 RooMultiVarGaussian.cxx:557
 RooMultiVarGaussian.cxx:558
 RooMultiVarGaussian.cxx:559
 RooMultiVarGaussian.cxx:560
 RooMultiVarGaussian.cxx:561
 RooMultiVarGaussian.cxx:562