// Most general description of B decay time distribution with effects
// of CP violation, mixing and life time differences. This function can
// be analytically convolved with any RooResolutionModel implementation
// END_HTML
#include "RooFit.h"
#include "Riostream.h"
#include "TMath.h"
#include "RooBDecay.h"
#include "RooRealVar.h"
#include "RooRandom.h"
ClassImp(RooBDecay);
RooBDecay::RooBDecay(const char *name, const char* title,
RooRealVar& t, RooAbsReal& tau, RooAbsReal& dgamma,
RooAbsReal& f0, RooAbsReal& f1, RooAbsReal& f2, RooAbsReal& f3,
RooAbsReal& dm, const RooResolutionModel& model, DecayType type) :
RooAbsAnaConvPdf(name, title, model, t),
_t("t", "time", this, t),
_tau("tau", "Average Decay Time", this, tau),
_dgamma("dgamma", "Delta Gamma", this, dgamma),
_f0("f0", "Cosh Coefficient", this, f0),
_f1("f1", "Sinh Coefficient", this, f1),
_f2("f2", "Cos Coefficient", this, f2),
_f3("f3", "Sin Coefficient", this, f3),
_dm("dm", "Delta Mass", this, dm),
_type(type)
{
switch(type)
{
case SingleSided:
_basisCosh = declareBasis("exp(-@0/@1)*cosh(@0*@2/2)", RooArgList(tau,dgamma));
_basisSinh = declareBasis("exp(-@0/@1)*sinh(@0*@2/2)", RooArgList(tau,dgamma));
_basisCos = declareBasis("exp(-@0/@1)*cos(@0*@2)",RooArgList(tau, dm));
_basisSin = declareBasis("exp(-@0/@1)*sin(@0*@2)",RooArgList(tau, dm));
break;
case Flipped:
_basisCosh = declareBasis("exp(@0/@1)*cosh(@0*@2/2)", RooArgList(tau,dgamma));
_basisSinh = declareBasis("exp(@0/@1)*sinh(@0*@2/2)", RooArgList(tau,dgamma));
_basisCos = declareBasis("exp(@0/@1)*cos(@0*@2)",RooArgList(tau, dm));
_basisSin = declareBasis("exp(@0/@1)*sin(@0*@2)",RooArgList(tau, dm));
break;
case DoubleSided:
_basisCosh = declareBasis("exp(-abs(@0)/@1)*cosh(@0*@2/2)", RooArgList(tau,dgamma));
_basisSinh = declareBasis("exp(-abs(@0)/@1)*sinh(@0*@2/2)", RooArgList(tau,dgamma));
_basisCos = declareBasis("exp(-abs(@0)/@1)*cos(@0*@2)",RooArgList(tau, dm));
_basisSin = declareBasis("exp(-abs(@0)/@1)*sin(@0*@2)",RooArgList(tau, dm));
break;
}
}
RooBDecay::RooBDecay(const RooBDecay& other, const char* name) :
RooAbsAnaConvPdf(other, name),
_t("t", this, other._t),
_tau("tau", this, other._tau),
_dgamma("dgamma", this, other._dgamma),
_f0("f0", this, other._f0),
_f1("f1", this, other._f1),
_f2("f2", this, other._f2),
_f3("f3", this, other._f3),
_dm("dm", this, other._dm),
_basisCosh(other._basisCosh),
_basisSinh(other._basisSinh),
_basisCos(other._basisCos),
_basisSin(other._basisSin),
_type(other._type)
{
}
RooBDecay::~RooBDecay()
{
}
Double_t RooBDecay::coefficient(Int_t basisIndex) const
{
if(basisIndex == _basisCosh)
{
return _f0;
}
if(basisIndex == _basisSinh)
{
return _f1;
}
if(basisIndex == _basisCos)
{
return _f2;
}
if(basisIndex == _basisSin)
{
return _f3;
}
return 0 ;
}
RooArgSet* RooBDecay::coefVars(Int_t basisIndex) const
{
if(basisIndex == _basisCosh)
{
return _f0.arg().getVariables();
}
if(basisIndex == _basisSinh)
{
return _f1.arg().getVariables();
}
if(basisIndex == _basisCos)
{
return _f2.arg().getVariables();
}
if(basisIndex == _basisSin)
{
return _f3.arg().getVariables();
}
return 0 ;
}
Int_t RooBDecay::getCoefAnalyticalIntegral(Int_t coef, RooArgSet& allVars, RooArgSet& analVars, const char* rangeName) const
{
if(coef == _basisCosh)
{
return _f0.arg().getAnalyticalIntegral(allVars,analVars,rangeName) ;
}
if(coef == _basisSinh)
{
return _f1.arg().getAnalyticalIntegral(allVars,analVars,rangeName) ;
}
if(coef == _basisCos)
{
return _f2.arg().getAnalyticalIntegral(allVars,analVars,rangeName) ;
}
if(coef == _basisSin)
{
return _f3.arg().getAnalyticalIntegral(allVars,analVars,rangeName) ;
}
return 0 ;
}
Double_t RooBDecay::coefAnalyticalIntegral(Int_t coef, Int_t code, const char* rangeName) const
{
if(coef == _basisCosh)
{
return _f0.arg().analyticalIntegral(code,rangeName) ;
}
if(coef == _basisSinh)
{
return _f1.arg().analyticalIntegral(code,rangeName) ;
}
if(coef == _basisCos)
{
return _f2.arg().analyticalIntegral(code,rangeName) ;
}
if(coef == _basisSin)
{
return _f3.arg().analyticalIntegral(code,rangeName) ;
}
return 0 ;
}
Int_t RooBDecay::getGenerator(const RooArgSet& directVars, RooArgSet &generateVars, Bool_t ) const
{
if (matchArgs(directVars, generateVars, _t)) return 1;
return 0;
}
void RooBDecay::generateEvent(Int_t code)
{
assert(code==1);
Double_t gammamin = 1/_tau-TMath::Abs(_dgamma)/2;
while(1) {
Double_t t = -log(RooRandom::uniform())/gammamin;
if (_type == Flipped || (_type == DoubleSided && RooRandom::uniform() <0.5) ) t *= -1;
if ( t<_t.min() || t>_t.max() ) continue;
Double_t dgt = _dgamma*t/2;
Double_t dmt = _dm*t;
Double_t ft = fabs(t);
Double_t f = exp(-ft/_tau)*(_f0*cosh(dgt)+_f1*sinh(dgt)+_f2*cos(dmt)+_f3*sin(dmt));
if(f < 0) {
cout << "RooBDecay::generateEvent(" << GetName() << ") ERROR: PDF value less than zero" << endl;
::abort();
}
Double_t w = 1.001*exp(-ft*gammamin)*(TMath::Abs(_f0)+TMath::Abs(_f1)+sqrt(_f2*_f2+_f3*_f3));
if(w < f) {
cout << "RooBDecay::generateEvent(" << GetName() << ") ERROR: Envelope function less than p.d.f. " << endl;
cout << _f0 << endl;
cout << _f1 << endl;
cout << _f2 << endl;
cout << _f3 << endl;
::abort();
}
if(w*RooRandom::uniform() > f) continue;
_t = t;
break;
}
}