Class describing a geometrical plane in 3 dimensions. A Plane3D is a 2 dimensional surface spanned by two linearly independent vectors. The plane is described by the equation \f$ a*x + b*y + c*z + d = 0 \f$ where (a,b,c) are the components of the normal vector to the plane \f$ n = (a,b,c) \f$ and \f$ d = - n \dot x \f$, where x is any point belonging to plane. More information on the mathematics describing a plane in 3D is available on <A HREF=http://mathworld.wolfram.com/Plane.html>MathWord</A>. The Plane3D class contains the 4 scalar values in double which represent the four coefficients, fA, fB, fC, fD. fA, fB, fC are the normal components normalized to 1, i.e. fA**2 + fB**2 + fC**2 = 1 @ingroup GenVector

void | Normalize() |

Plane3D(const ROOT::Math::Plane3D::Scalar& a, const ROOT::Math::Plane3D::Scalar& b, const ROOT::Math::Plane3D::Scalar& c, const ROOT::Math::Plane3D::Scalar& d)

generic constructors from the four scalar values describing the plane according to the equation ax + by + cz + d = 0 \param a scalar value \param b scalar value \param c scalar value \param d sxcalar value

Plane3D(const ROOT::Math::Plane3D::Point& p1, const ROOT::Math::Plane3D::Point& p2, const ROOT::Math::Plane3D::Point& p3)

BuildFrom3Points(const ROOT::Math::Plane3D::Point& p1, const ROOT::Math::Plane3D::Point& p2, const ROOT::Math::Plane3D::Point& p3)

Plane3D(const ROOT::Math::Plane3D::Point& p1, const ROOT::Math::Plane3D::Point& p2, const ROOT::Math::Plane3D::Point& p3)

constructor from three generic point belonging to the plane \param p1 point1 expressed as ROOT::Math::DisplacementVector3D<Cartesian3D<double> > \param p2 point2 expressed as ROOT::Math::DisplacementVector3D<Cartesian3D<double> > \param p3 point3 expressed as ROOT::Math::DisplacementVector3D<Cartesian3D<double> >

Plane3D & operator=(const ROOT::Math::Plane3D& plane)

compiler-generated copy ctor and dtor are fine. ------ assignment ------ Assignment operator from other Plane3D class

Scalar A()

Return the a coefficient of the plane equation \f$ a*x + b*y + c*z + d = 0 \f$. It is also the x-component of the vector perpendicular to the plane.

`{ return fA; }`

Scalar B()

Return the b coefficient of the plane equation \f$ a*x + b*y + c*z + d = 0 \f$. It is also the y-component of the vector perpendicular to the plane

`{ return fB; }`

Scalar C()

Return the c coefficient of the plane equation \f$ a*x + b*y + c*z + d = 0 \f$. It is also the z-component of the vector perpendicular to the plane

`{ return fC; }`

Scalar HesseDistance() const

Return the Hesse Distance (distance from the origin) of the plane or the d coefficient expressed in normalize form

Scalar Distance(const ROOT::Math::Plane3D::Point& p) const

Return the signed distance to a Point. The distance is signed positive if the Point is in the same side of the normal vector to the plane. \param p Point expressed in Cartesian Coordinates

Point ProjectOntoPlane(const ROOT::Math::Plane3D::Point& p) const

Return the projection of a Cartesian point to a plane \param p Point expressed as PositionVector3D<Cartesian3D<double> >

bool operator==(const ROOT::Math::Plane3D& rhs) const

------------------- Equality ----------------- Exact equality

bool operator!=(const ROOT::Math::Plane3D& rhs) const