// @(#)root/tmva $Id: TSpline2.cxx 29122 2009-06-22 06:51:30Z brun $ // Author: Andreas Hoecker, Joerg Stelzer, Helge Voss /********************************************************************************** * Project: TMVA - a Root-integrated toolkit for multivariate data analysis * * Package: TMVA * * Class : TSpline2 * * Web : http://tmva.sourceforge.net * * * * Description: * * Implementation (see header for description) * * * * Authors (alphabetical): * * Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland * * Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany * * Kai Voss <Kai.Voss@cern.ch> - U. of Victoria, Canada * * * * Copyright (c) 2005: * * CERN, Switzerland * * U. of Victoria, Canada * * MPI-K Heidelberg, Germany * * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted according to the terms listed in LICENSE * * (http://tmva.sourceforge.net/LICENSE) * **********************************************************************************/ //_______________________________________________________________________ // // Quadratic interpolation of TGraph //_______________________________________________________________________ #include "TMath.h" #include "TMVA/TSpline2.h" ClassImp(TMVA::TSpline2) //_______________________________________________________________________ TMVA::TSpline2::TSpline2( const TString& title, TGraph* theGraph ) : fGraph( theGraph ) // not owned by TSpline2 { // constructor from TGraph // TSpline is a TNamed object SetNameTitle( title, title ); } //_______________________________________________________________________ TMVA::TSpline2::~TSpline2( void ) { // destructor if (fGraph) delete fGraph; // ROOT's spline classes also own the TGraph } //_______________________________________________________________________ Double_t TMVA::TSpline2::Eval( const Double_t x ) const { // returns quadratically interpolated TGraph entry around x Double_t retval=0; Int_t ibin = TMath::BinarySearch( fGraph->GetN(), fGraph->GetX(), x ); // sanity checks if (ibin < 0 ) ibin = 0; if (ibin >= fGraph->GetN()) ibin = fGraph->GetN() - 1; Float_t dx = 0; // should be zero if (ibin == 0 ) { retval = Quadrax( x, fGraph->GetX()[ibin] + dx, fGraph->GetX()[ibin+1] + dx, fGraph->GetX()[ibin+2] + dx, fGraph->GetY()[ibin], fGraph->GetY()[ibin+1], fGraph->GetY()[ibin+2]); } else if (ibin >= (fGraph->GetN()-2)) { ibin = fGraph->GetN() - 1; // always fixed to last bin retval = Quadrax( x, fGraph->GetX()[ibin-2] + dx, fGraph->GetX()[ibin-1] + dx, fGraph->GetX()[ibin] + dx, fGraph->GetY()[ibin-2], fGraph->GetY()[ibin-1], fGraph->GetY()[ibin]); } else { retval = ( Quadrax( x, fGraph->GetX()[ibin-1] + dx, fGraph->GetX()[ibin] + dx, fGraph->GetX()[ibin+1] + dx, fGraph->GetY()[ibin-1], fGraph->GetY()[ibin], fGraph->GetY()[ibin+1]) + Quadrax( x, fGraph->GetX()[ibin] + dx, fGraph->GetX()[ibin+1] + dx, fGraph->GetX()[ibin+2] + dx, fGraph->GetY()[ibin], fGraph->GetY()[ibin+1], fGraph->GetY()[ibin+2]) )*0.5; } return retval; } //_______________________________________________________________________ void TMVA::TSpline2::BuildCoeff( void ) { // no coefficients to precompute } //_______________________________________________________________________ void TMVA::TSpline2::GetKnot( Int_t /*i*/, Double_t& /*x*/, Double_t& /*y*/ ) const { // no knots } //_______________________________________________________________________ Double_t TMVA::TSpline2::Quadrax( const Float_t dm,const Float_t dm1,const Float_t dm2,const Float_t dm3, const Float_t cos1, const Float_t cos2, const Float_t cos3 ) const { // quadratic interpolation // Revised and checked by Francois Nov, 16th, 2000 // Note the beautiful non-spontaneous symmetry breaking ... // It was checked that the old routine gave exactly the same answers. // Float_t a = cos1*(dm2-dm3) + cos2*(dm3-dm1) + cos3*(dm1-dm2); Float_t b = cos1*(dm2*dm2-dm3*dm3) + cos2*(dm3*dm3-dm1*dm1) + cos3*(dm1*dm1-dm2*dm2); Float_t c = cos1*(dm2-dm3)*dm2*dm3 + cos2*(dm3-dm1)*dm3*dm1 + cos3*(dm1-dm2)*dm1*dm2; Float_t denom = (dm2-dm3)*(dm3-dm1)*(dm1-dm2); return (denom != 0.0) ? (-a*dm*dm+b*dm-c)/denom : 0.0; }