ROOT logo
// @(#)root/mathcore:$Id$
// Authors: L. Moneta, A. Zsenei   08/2005 


// Authors: Andras Zsenei & Lorenzo Moneta   08/2005 


/**********************************************************************
 *                                                                    *
 * Copyright (c) 2005 , LCG ROOT MathLib Team                         *
 *                                                                    *
 *                                                                    *
 **********************************************************************/


#if defined(__CINT__) && !defined(__MAKECINT__)
// avoid to include header file when using CINT 
#ifndef _WIN32
#include "../lib/libMathCore.so"
#else
#include "../bin/libMathCore.dll"
#endif

#else


#ifndef ROOT_Math_QuantFuncMathCore
#define ROOT_Math_QuantFuncMathCore


namespace ROOT {
namespace Math {



  /** @defgroup QuantFunc Quantile Functions 
   *  @ingroup StatFunc 
   *
   *  Inverse functions of the cumulative distribution functions 
   *  and the inverse of the complement of the cumulative distribution functions 
   *  for various distributions.
   *  The functions with the extension <em>_quantile</em> calculate the
   *  inverse of the <em>_cdf</em> function, the 
   *  lower tail integral of the probability density function
   *  \f$D^{-1}(z)\f$ where
   *
   *  \f[ D(x) = \int_{-\infty}^{x} p(x') dx' \f]
   *
   *  while those with the <em>_quantile_c</em> extension calculate the 
   *  inverse of the <em>_cdf_c</em> functions, the upper tail integral of the probability 
   *  density function \f$D^{-1}(z) \f$ where
   *
   *  \f[ D(x) = \int_{x}^{+\infty} p(x') dx' \f]
   *
   *  These functions are defined in the header file <em>Math/ProbFunc.h<em> or in the global one 
   *  including all statistical dunctions <em>Math/DistFunc.h<em>
   *
   *
   * <strong>NOTE:</strong> In the old releases (< 5.14) the <em>_quantile</em> functions were called 
   * <em>_quant_inv</em> and the <em>_quantile_c</em> functions were called 
   * <em>_prob_inv</em>. 
   * These names are currently kept for backward compatibility, but 
   * their usage is deprecated.
   *
   */

   /** @name Quantile Functions from MathCore 
   * The implementation is provided in MathCore and for the majority of the function comes from 
   * <A HREF="http://www.netlib.org/cephes">Cephes</A>. 

   */ 

  //@{



  /**
     
     Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
     function of the upper tail of the beta distribution
     (#beta_cdf_c). 
     It is implemented using the function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>. 
  
  
     @ingroup QuantFunc

  */
   double beta_quantile(double x, double a, double b);

   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the lower tail of the beta distribution
      (#beta_cdf). 
      It is implemented using 
      the function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>. 

      @ingroup QuantFunc

   */
   double beta_quantile_c(double x, double a, double b);



   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the upper tail of the Cauchy distribution (#cauchy_cdf_c) 
      which is also called Lorentzian distribution. For 
      detailed description see 
      <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html">
      Mathworld</A>. 
  
      @ingroup QuantFunc

   */

   double cauchy_quantile_c(double z, double b);




   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the lower tail of the Cauchy distribution (#cauchy_cdf) 
      which is also called Breit-Wigner or Lorentzian distribution. For 
      detailed description see 
      <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html">
      Mathworld</A>. The implementation used is that of 
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC294">GSL</A>.
  
      @ingroup QuantFunc

   */

   double cauchy_quantile(double z, double b);




   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the upper tail of the Breit-Wigner distribution (#breitwigner_cdf_c) 
      which is similar to the Cauchy distribution. For 
      detailed description see 
      <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html">
      Mathworld</A>. It is evaluated using the same implementation of 
      #cauchy_quantile_c. 
  
      @ingroup QuantFunc

   */

   inline double breitwigner_quantile_c(double z, double gamma) { 
      return cauchy_quantile_c(z, gamma/2.0);
   }




   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the lower tail of the Breit_Wigner distribution (#breitwigner_cdf) 
      which is similar to the Cauchy distribution. For  
      detailed description see 
      <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html">
      Mathworld</A>. It is evaluated using the same implementation of 
      #cauchy_quantile. 

  
      @ingroup QuantFunc

   */

   inline double breitwigner_quantile(double z, double gamma) { 
      return cauchy_quantile(z, gamma/2.0);
   }






   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the upper tail of the \f$\chi^2\f$ distribution 
      with \f$r\f$ degrees of freedom (#chisquared_cdf_c). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
      Mathworld</A>. It is implemented using the inverse of the incomplete complement gamma function, using 
      the function igami from <A HREF="http://www.netlib.org/cephes">Cephes</A>. 
  
      @ingroup QuantFunc

   */

   double chisquared_quantile_c(double z, double r);



   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the lower tail of the \f$\chi^2\f$ distribution 
      with \f$r\f$ degrees of freedom (#chisquared_cdf). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/Chi-SquaredDistribution.html">
      Mathworld</A>. 
      It is implemented using  chisquared_quantile_c, therefore is not very precise for small z. 
      It is reccomended to use the MathMore function (ROOT::MathMore::chisquared_quantile )implemented using GSL

      @ingroup QuantFunc

   */

   double chisquared_quantile(double z, double r);  



   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the upper tail of the exponential distribution
      (#exponential_cdf_c). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/ExponentialDistribution.html">
      Mathworld</A>.
  
      @ingroup QuantFunc

   */

   double exponential_quantile_c(double z, double lambda);




   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the lower tail of the exponential distribution
      (#exponential_cdf). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/ExponentialDistribution.html">
      Mathworld</A>. 
  
      @ingroup QuantFunc

   */

   double exponential_quantile(double z, double lambda);

  

   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the lower tail of the f distribution
      (#fdistribution_cdf). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/F-Distribution.html">
      Mathworld</A>.
      It is implemented using the inverse of the incomplete beta function, 
      function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>. 
  
      @ingroup QuantFunc

   */
   double fdistribution_quantile(double z, double n, double m);  

   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the upper tail of the f distribution
      (#fdistribution_cdf_c). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/F-Distribution.html">
      Mathworld</A>.
      It is implemented using the inverse of the incomplete beta function, 
      function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>. 
  
      @ingroup QuantFunc
   */

   double fdistribution_quantile_c(double z, double n, double m);  


   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the upper tail of the gamma distribution
      (#gamma_cdf_c). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/GammaDistribution.html">
      Mathworld</A>. The implementation used is that of 
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC300">GSL</A>.
      It is implemented using the function igami taken 
      from <A HREF="http://www.netlib.org/cephes">Cephes</A>. 
  
      @ingroup QuantFunc

   */

   double gamma_quantile_c(double z, double alpha, double theta);




   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the lower tail of the gamma distribution
      (#gamma_cdf). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/GammaDistribution.html">
      Mathworld</A>.
      It is implemented using  chisquared_quantile_c, therefore is not very precise for small z. 
      For this special cases it is reccomended to use the MathMore function ROOT::MathMore::gamma_quantile
      implemented using GSL

  
      @ingroup QuantFunc

   */

   double gamma_quantile(double z, double alpha, double theta);



   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the upper tail of the normal (Gaussian) distribution
      (#gaussian_cdf_c). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/NormalDistribution.html">
      Mathworld</A>. It can also be evaluated using #normal_quantile_c which will 
      call the same implementation. 

      @ingroup QuantFunc

   */

   double gaussian_quantile_c(double z, double sigma);




   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the lower tail of the normal (Gaussian) distribution
      (#gaussian_cdf). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/NormalDistribution.html">
      Mathworld</A>. It can also be evaluated using #normal_quantile which will 
      call the same implementation.
      It is implemented using the function  ROOT::Math::Cephes::ndtri taken from 
      <A HREF="http://www.netlib.org/cephes">Cephes</A>. 

      @ingroup QuantFunc

   */

   double gaussian_quantile(double z, double sigma);




   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the upper tail of the lognormal distribution
      (#lognormal_cdf_c). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/LogNormalDistribution.html">
      Mathworld</A>. The implementation used is that of 
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC302">GSL</A>.
  
      @ingroup QuantFunc

   */

   double lognormal_quantile_c(double x, double m, double s);




   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the lower tail of the lognormal distribution
      (#lognormal_cdf). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/LogNormalDistribution.html">
      Mathworld</A>. The implementation used is that of 
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC302">GSL</A>.
  
      @ingroup QuantFunc

   */

   double lognormal_quantile(double x, double m, double s);




   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the upper tail of the normal (Gaussian) distribution
      (#normal_cdf_c). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/NormalDistribution.html">
      Mathworld</A>. It can also be evaluated using #gaussian_quantile_c which will 
      call the same implementation. 
      It is implemented using the function  ROOT::Math::Cephes::ndtri taken from 
      <A HREF="http://www.netlib.org/cephes">Cephes</A>. 

      @ingroup QuantFunc

   */

   double normal_quantile_c(double z, double sigma);
   /// alternative name for same function
   inline double gaussian_quantile_c(double z, double sigma) { 
      return normal_quantile_c(z,sigma);
   }




   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the lower tail of the normal (Gaussian) distribution
      (#normal_cdf). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/NormalDistribution.html">
      Mathworld</A>. It can also be evaluated using #gaussian_quantile which will 
      call the same implementation.
      It is implemented using the function  ROOT::Math::Cephes::ndtri taken from 
      <A HREF="http://www.netlib.org/cephes">Cephes</A>. 


      @ingroup QuantFunc

   */

   double normal_quantile(double z, double sigma);
   /// alternative name for same function
   inline double gaussian_quantile(double z, double sigma) { 
      return normal_quantile(z,sigma);
   }



#ifdef LATER // t quantiles are still in MathMore

   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the upper tail of Student's t-distribution
      (#tdistribution_cdf_c). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/Studentst-Distribution.html">
      Mathworld</A>. The implementation used is that of 
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC305">GSL</A>.
  
      @ingroup QuantFunc

   */

   double tdistribution_quantile_c(double z, double r);




   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the lower tail of Student's t-distribution
      (#tdistribution_cdf). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/Studentst-Distribution.html">
      Mathworld</A>. The implementation used is that of 
      <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC305">GSL</A>.
  
      @ingroup QuantFunc

   */

   double tdistribution_quantile(double z, double r);

#endif


   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the upper tail of the uniform (flat) distribution
      (#uniform_cdf_c). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/UniformDistribution.html">
      Mathworld</A>.
  
      @ingroup QuantFunc

   */

   double uniform_quantile_c(double z, double a, double b);




   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the lower tail of the uniform (flat) distribution
      (#uniform_cdf). For detailed description see 
      <A HREF="http://mathworld.wolfram.com/UniformDistribution.html">
      Mathworld</A>.
  
      @ingroup QuantFunc

   */

   double uniform_quantile(double z, double a, double b);




   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the lower tail of the Landau distribution
      (#landau_cdf).

   For detailed description see 
   K.S. K&ouml;lbig and B. Schorr, A program package for the Landau distribution, 
   <A HREF="http://dx.doi.org/10.1016/0010-4655(84)90085-7">Computer Phys. Comm. 31 (1984) 97-111</A>
   <A HREF="http://dx.doi.org/10.1016/j.cpc.2008.03.002">[Erratum-ibid. 178 (2008) 972]</A>. 
   The same algorithms as in 
   <A HREF="http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/g110/top.html">
   CERNLIB</A> (RANLAN) is used.  
   
   @param z The argument \f$z\f$ 
   @param xi The width parameter \f$\xi\f$ 
  
      @ingroup QuantFunc

   */

   double landau_quantile(double z, double xi = 1);


   /**

      Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution 
      function of the upper tail of the landau distribution
      (#landau_cdf_c).
      Implemented using #landau_quantile
   
   @param z The argument \f$z\f$ 
   @param xi The width parameter \f$\xi\f$ 
  
      @ingroup QuantFunc

   */

   double landau_quantile_c(double z, double xi = 1);


#ifdef HAVE_OLD_STAT_FUNC

   //@}
   /** @name Backward compatible functions */ 


   inline double breitwigner_prob_inv(double x, double gamma) {
      return  breitwigner_quantile_c(x,gamma);
   }
   inline double breitwigner_quant_inv(double x, double gamma) { 
      return  breitwigner_quantile(x,gamma);
   }

   inline double cauchy_prob_inv(double x, double b) { 
      return cauchy_quantile_c(x,b);
   }
   inline double cauchy_quant_inv(double x, double b) {
      return cauchy_quantile  (x,b);
   }

   inline double exponential_prob_inv(double x, double lambda) { 
      return exponential_quantile_c(x, lambda );
   }
   inline double exponential_quant_inv(double x, double lambda) {
      return exponential_quantile  (x, lambda );
   }

   inline double gaussian_prob_inv(double x, double sigma) {
      return  gaussian_quantile_c( x, sigma );
   }
   inline double gaussian_quant_inv(double x, double sigma) { 
      return  gaussian_quantile  ( x, sigma );
   }

   inline double lognormal_prob_inv(double x, double m, double s) {
      return lognormal_quantile_c( x, m, s );   
   }
   inline double lognormal_quant_inv(double x, double m, double s) {
      return lognormal_quantile  ( x, m, s );   
   }

   inline double normal_prob_inv(double x, double sigma) {
      return  normal_quantile_c( x, sigma );
   }
   inline double normal_quant_inv(double x, double sigma) {
      return  normal_quantile  ( x, sigma );
   }

   inline double uniform_prob_inv(double x, double a, double b) { 
      return uniform_quantile_c( x, a, b ); 
   }
   inline double uniform_quant_inv(double x, double a, double b) {
      return uniform_quantile  ( x, a, b ); 
   }

   inline double chisquared_prob_inv(double x, double r) {
      return chisquared_quantile_c(x, r ); 
   }
   
   inline double gamma_prob_inv(double x, double alpha, double theta) {
      return gamma_quantile_c (x, alpha, theta ); 
   }


#endif


} // namespace Math
} // namespace ROOT



#endif // ROOT_Math_QuantFuncMathCore

#endif // if defined (__CINT__) && !defined(__MAKECINT__)
 QuantFuncMathCore.h:1
 QuantFuncMathCore.h:2
 QuantFuncMathCore.h:3
 QuantFuncMathCore.h:4
 QuantFuncMathCore.h:5
 QuantFuncMathCore.h:6
 QuantFuncMathCore.h:7
 QuantFuncMathCore.h:8
 QuantFuncMathCore.h:9
 QuantFuncMathCore.h:10
 QuantFuncMathCore.h:11
 QuantFuncMathCore.h:12
 QuantFuncMathCore.h:13
 QuantFuncMathCore.h:14
 QuantFuncMathCore.h:15
 QuantFuncMathCore.h:16
 QuantFuncMathCore.h:17
 QuantFuncMathCore.h:18
 QuantFuncMathCore.h:19
 QuantFuncMathCore.h:20
 QuantFuncMathCore.h:21
 QuantFuncMathCore.h:22
 QuantFuncMathCore.h:23
 QuantFuncMathCore.h:24
 QuantFuncMathCore.h:25
 QuantFuncMathCore.h:26
 QuantFuncMathCore.h:27
 QuantFuncMathCore.h:28
 QuantFuncMathCore.h:29
 QuantFuncMathCore.h:30
 QuantFuncMathCore.h:31
 QuantFuncMathCore.h:32
 QuantFuncMathCore.h:33
 QuantFuncMathCore.h:34
 QuantFuncMathCore.h:35
 QuantFuncMathCore.h:36
 QuantFuncMathCore.h:37
 QuantFuncMathCore.h:38
 QuantFuncMathCore.h:39
 QuantFuncMathCore.h:40
 QuantFuncMathCore.h:41
 QuantFuncMathCore.h:42
 QuantFuncMathCore.h:43
 QuantFuncMathCore.h:44
 QuantFuncMathCore.h:45
 QuantFuncMathCore.h:46
 QuantFuncMathCore.h:47
 QuantFuncMathCore.h:48
 QuantFuncMathCore.h:49
 QuantFuncMathCore.h:50
 QuantFuncMathCore.h:51
 QuantFuncMathCore.h:52
 QuantFuncMathCore.h:53
 QuantFuncMathCore.h:54
 QuantFuncMathCore.h:55
 QuantFuncMathCore.h:56
 QuantFuncMathCore.h:57
 QuantFuncMathCore.h:58
 QuantFuncMathCore.h:59
 QuantFuncMathCore.h:60
 QuantFuncMathCore.h:61
 QuantFuncMathCore.h:62
 QuantFuncMathCore.h:63
 QuantFuncMathCore.h:64
 QuantFuncMathCore.h:65
 QuantFuncMathCore.h:66
 QuantFuncMathCore.h:67
 QuantFuncMathCore.h:68
 QuantFuncMathCore.h:69
 QuantFuncMathCore.h:70
 QuantFuncMathCore.h:71
 QuantFuncMathCore.h:72
 QuantFuncMathCore.h:73
 QuantFuncMathCore.h:74
 QuantFuncMathCore.h:75
 QuantFuncMathCore.h:76
 QuantFuncMathCore.h:77
 QuantFuncMathCore.h:78
 QuantFuncMathCore.h:79
 QuantFuncMathCore.h:80
 QuantFuncMathCore.h:81
 QuantFuncMathCore.h:82
 QuantFuncMathCore.h:83
 QuantFuncMathCore.h:84
 QuantFuncMathCore.h:85
 QuantFuncMathCore.h:86
 QuantFuncMathCore.h:87
 QuantFuncMathCore.h:88
 QuantFuncMathCore.h:89
 QuantFuncMathCore.h:90
 QuantFuncMathCore.h:91
 QuantFuncMathCore.h:92
 QuantFuncMathCore.h:93
 QuantFuncMathCore.h:94
 QuantFuncMathCore.h:95
 QuantFuncMathCore.h:96
 QuantFuncMathCore.h:97
 QuantFuncMathCore.h:98
 QuantFuncMathCore.h:99
 QuantFuncMathCore.h:100
 QuantFuncMathCore.h:101
 QuantFuncMathCore.h:102
 QuantFuncMathCore.h:103
 QuantFuncMathCore.h:104
 QuantFuncMathCore.h:105
 QuantFuncMathCore.h:106
 QuantFuncMathCore.h:107
 QuantFuncMathCore.h:108
 QuantFuncMathCore.h:109
 QuantFuncMathCore.h:110
 QuantFuncMathCore.h:111
 QuantFuncMathCore.h:112
 QuantFuncMathCore.h:113
 QuantFuncMathCore.h:114
 QuantFuncMathCore.h:115
 QuantFuncMathCore.h:116
 QuantFuncMathCore.h:117
 QuantFuncMathCore.h:118
 QuantFuncMathCore.h:119
 QuantFuncMathCore.h:120
 QuantFuncMathCore.h:121
 QuantFuncMathCore.h:122
 QuantFuncMathCore.h:123
 QuantFuncMathCore.h:124
 QuantFuncMathCore.h:125
 QuantFuncMathCore.h:126
 QuantFuncMathCore.h:127
 QuantFuncMathCore.h:128
 QuantFuncMathCore.h:129
 QuantFuncMathCore.h:130
 QuantFuncMathCore.h:131
 QuantFuncMathCore.h:132
 QuantFuncMathCore.h:133
 QuantFuncMathCore.h:134
 QuantFuncMathCore.h:135
 QuantFuncMathCore.h:136
 QuantFuncMathCore.h:137
 QuantFuncMathCore.h:138
 QuantFuncMathCore.h:139
 QuantFuncMathCore.h:140
 QuantFuncMathCore.h:141
 QuantFuncMathCore.h:142
 QuantFuncMathCore.h:143
 QuantFuncMathCore.h:144
 QuantFuncMathCore.h:145
 QuantFuncMathCore.h:146
 QuantFuncMathCore.h:147
 QuantFuncMathCore.h:148
 QuantFuncMathCore.h:149
 QuantFuncMathCore.h:150
 QuantFuncMathCore.h:151
 QuantFuncMathCore.h:152
 QuantFuncMathCore.h:153
 QuantFuncMathCore.h:154
 QuantFuncMathCore.h:155
 QuantFuncMathCore.h:156
 QuantFuncMathCore.h:157
 QuantFuncMathCore.h:158
 QuantFuncMathCore.h:159
 QuantFuncMathCore.h:160
 QuantFuncMathCore.h:161
 QuantFuncMathCore.h:162
 QuantFuncMathCore.h:163
 QuantFuncMathCore.h:164
 QuantFuncMathCore.h:165
 QuantFuncMathCore.h:166
 QuantFuncMathCore.h:167
 QuantFuncMathCore.h:168
 QuantFuncMathCore.h:169
 QuantFuncMathCore.h:170
 QuantFuncMathCore.h:171
 QuantFuncMathCore.h:172
 QuantFuncMathCore.h:173
 QuantFuncMathCore.h:174
 QuantFuncMathCore.h:175
 QuantFuncMathCore.h:176
 QuantFuncMathCore.h:177
 QuantFuncMathCore.h:178
 QuantFuncMathCore.h:179
 QuantFuncMathCore.h:180
 QuantFuncMathCore.h:181
 QuantFuncMathCore.h:182
 QuantFuncMathCore.h:183
 QuantFuncMathCore.h:184
 QuantFuncMathCore.h:185
 QuantFuncMathCore.h:186
 QuantFuncMathCore.h:187
 QuantFuncMathCore.h:188
 QuantFuncMathCore.h:189
 QuantFuncMathCore.h:190
 QuantFuncMathCore.h:191
 QuantFuncMathCore.h:192
 QuantFuncMathCore.h:193
 QuantFuncMathCore.h:194
 QuantFuncMathCore.h:195
 QuantFuncMathCore.h:196
 QuantFuncMathCore.h:197
 QuantFuncMathCore.h:198
 QuantFuncMathCore.h:199
 QuantFuncMathCore.h:200
 QuantFuncMathCore.h:201
 QuantFuncMathCore.h:202
 QuantFuncMathCore.h:203
 QuantFuncMathCore.h:204
 QuantFuncMathCore.h:205
 QuantFuncMathCore.h:206
 QuantFuncMathCore.h:207
 QuantFuncMathCore.h:208
 QuantFuncMathCore.h:209
 QuantFuncMathCore.h:210
 QuantFuncMathCore.h:211
 QuantFuncMathCore.h:212
 QuantFuncMathCore.h:213
 QuantFuncMathCore.h:214
 QuantFuncMathCore.h:215
 QuantFuncMathCore.h:216
 QuantFuncMathCore.h:217
 QuantFuncMathCore.h:218
 QuantFuncMathCore.h:219
 QuantFuncMathCore.h:220
 QuantFuncMathCore.h:221
 QuantFuncMathCore.h:222
 QuantFuncMathCore.h:223
 QuantFuncMathCore.h:224
 QuantFuncMathCore.h:225
 QuantFuncMathCore.h:226
 QuantFuncMathCore.h:227
 QuantFuncMathCore.h:228
 QuantFuncMathCore.h:229
 QuantFuncMathCore.h:230
 QuantFuncMathCore.h:231
 QuantFuncMathCore.h:232
 QuantFuncMathCore.h:233
 QuantFuncMathCore.h:234
 QuantFuncMathCore.h:235
 QuantFuncMathCore.h:236
 QuantFuncMathCore.h:237
 QuantFuncMathCore.h:238
 QuantFuncMathCore.h:239
 QuantFuncMathCore.h:240
 QuantFuncMathCore.h:241
 QuantFuncMathCore.h:242
 QuantFuncMathCore.h:243
 QuantFuncMathCore.h:244
 QuantFuncMathCore.h:245
 QuantFuncMathCore.h:246
 QuantFuncMathCore.h:247
 QuantFuncMathCore.h:248
 QuantFuncMathCore.h:249
 QuantFuncMathCore.h:250
 QuantFuncMathCore.h:251
 QuantFuncMathCore.h:252
 QuantFuncMathCore.h:253
 QuantFuncMathCore.h:254
 QuantFuncMathCore.h:255
 QuantFuncMathCore.h:256
 QuantFuncMathCore.h:257
 QuantFuncMathCore.h:258
 QuantFuncMathCore.h:259
 QuantFuncMathCore.h:260
 QuantFuncMathCore.h:261
 QuantFuncMathCore.h:262
 QuantFuncMathCore.h:263
 QuantFuncMathCore.h:264
 QuantFuncMathCore.h:265
 QuantFuncMathCore.h:266
 QuantFuncMathCore.h:267
 QuantFuncMathCore.h:268
 QuantFuncMathCore.h:269
 QuantFuncMathCore.h:270
 QuantFuncMathCore.h:271
 QuantFuncMathCore.h:272
 QuantFuncMathCore.h:273
 QuantFuncMathCore.h:274
 QuantFuncMathCore.h:275
 QuantFuncMathCore.h:276
 QuantFuncMathCore.h:277
 QuantFuncMathCore.h:278
 QuantFuncMathCore.h:279
 QuantFuncMathCore.h:280
 QuantFuncMathCore.h:281
 QuantFuncMathCore.h:282
 QuantFuncMathCore.h:283
 QuantFuncMathCore.h:284
 QuantFuncMathCore.h:285
 QuantFuncMathCore.h:286
 QuantFuncMathCore.h:287
 QuantFuncMathCore.h:288
 QuantFuncMathCore.h:289
 QuantFuncMathCore.h:290
 QuantFuncMathCore.h:291
 QuantFuncMathCore.h:292
 QuantFuncMathCore.h:293
 QuantFuncMathCore.h:294
 QuantFuncMathCore.h:295
 QuantFuncMathCore.h:296
 QuantFuncMathCore.h:297
 QuantFuncMathCore.h:298
 QuantFuncMathCore.h:299
 QuantFuncMathCore.h:300
 QuantFuncMathCore.h:301
 QuantFuncMathCore.h:302
 QuantFuncMathCore.h:303
 QuantFuncMathCore.h:304
 QuantFuncMathCore.h:305
 QuantFuncMathCore.h:306
 QuantFuncMathCore.h:307
 QuantFuncMathCore.h:308
 QuantFuncMathCore.h:309
 QuantFuncMathCore.h:310
 QuantFuncMathCore.h:311
 QuantFuncMathCore.h:312
 QuantFuncMathCore.h:313
 QuantFuncMathCore.h:314
 QuantFuncMathCore.h:315
 QuantFuncMathCore.h:316
 QuantFuncMathCore.h:317
 QuantFuncMathCore.h:318
 QuantFuncMathCore.h:319
 QuantFuncMathCore.h:320
 QuantFuncMathCore.h:321
 QuantFuncMathCore.h:322
 QuantFuncMathCore.h:323
 QuantFuncMathCore.h:324
 QuantFuncMathCore.h:325
 QuantFuncMathCore.h:326
 QuantFuncMathCore.h:327
 QuantFuncMathCore.h:328
 QuantFuncMathCore.h:329
 QuantFuncMathCore.h:330
 QuantFuncMathCore.h:331
 QuantFuncMathCore.h:332
 QuantFuncMathCore.h:333
 QuantFuncMathCore.h:334
 QuantFuncMathCore.h:335
 QuantFuncMathCore.h:336
 QuantFuncMathCore.h:337
 QuantFuncMathCore.h:338
 QuantFuncMathCore.h:339
 QuantFuncMathCore.h:340
 QuantFuncMathCore.h:341
 QuantFuncMathCore.h:342
 QuantFuncMathCore.h:343
 QuantFuncMathCore.h:344
 QuantFuncMathCore.h:345
 QuantFuncMathCore.h:346
 QuantFuncMathCore.h:347
 QuantFuncMathCore.h:348
 QuantFuncMathCore.h:349
 QuantFuncMathCore.h:350
 QuantFuncMathCore.h:351
 QuantFuncMathCore.h:352
 QuantFuncMathCore.h:353
 QuantFuncMathCore.h:354
 QuantFuncMathCore.h:355
 QuantFuncMathCore.h:356
 QuantFuncMathCore.h:357
 QuantFuncMathCore.h:358
 QuantFuncMathCore.h:359
 QuantFuncMathCore.h:360
 QuantFuncMathCore.h:361
 QuantFuncMathCore.h:362
 QuantFuncMathCore.h:363
 QuantFuncMathCore.h:364
 QuantFuncMathCore.h:365
 QuantFuncMathCore.h:366
 QuantFuncMathCore.h:367
 QuantFuncMathCore.h:368
 QuantFuncMathCore.h:369
 QuantFuncMathCore.h:370
 QuantFuncMathCore.h:371
 QuantFuncMathCore.h:372
 QuantFuncMathCore.h:373
 QuantFuncMathCore.h:374
 QuantFuncMathCore.h:375
 QuantFuncMathCore.h:376
 QuantFuncMathCore.h:377
 QuantFuncMathCore.h:378
 QuantFuncMathCore.h:379
 QuantFuncMathCore.h:380
 QuantFuncMathCore.h:381
 QuantFuncMathCore.h:382
 QuantFuncMathCore.h:383
 QuantFuncMathCore.h:384
 QuantFuncMathCore.h:385
 QuantFuncMathCore.h:386
 QuantFuncMathCore.h:387
 QuantFuncMathCore.h:388
 QuantFuncMathCore.h:389
 QuantFuncMathCore.h:390
 QuantFuncMathCore.h:391
 QuantFuncMathCore.h:392
 QuantFuncMathCore.h:393
 QuantFuncMathCore.h:394
 QuantFuncMathCore.h:395
 QuantFuncMathCore.h:396
 QuantFuncMathCore.h:397
 QuantFuncMathCore.h:398
 QuantFuncMathCore.h:399
 QuantFuncMathCore.h:400
 QuantFuncMathCore.h:401
 QuantFuncMathCore.h:402
 QuantFuncMathCore.h:403
 QuantFuncMathCore.h:404
 QuantFuncMathCore.h:405
 QuantFuncMathCore.h:406
 QuantFuncMathCore.h:407
 QuantFuncMathCore.h:408
 QuantFuncMathCore.h:409
 QuantFuncMathCore.h:410
 QuantFuncMathCore.h:411
 QuantFuncMathCore.h:412
 QuantFuncMathCore.h:413
 QuantFuncMathCore.h:414
 QuantFuncMathCore.h:415
 QuantFuncMathCore.h:416
 QuantFuncMathCore.h:417
 QuantFuncMathCore.h:418
 QuantFuncMathCore.h:419
 QuantFuncMathCore.h:420
 QuantFuncMathCore.h:421
 QuantFuncMathCore.h:422
 QuantFuncMathCore.h:423
 QuantFuncMathCore.h:424
 QuantFuncMathCore.h:425
 QuantFuncMathCore.h:426
 QuantFuncMathCore.h:427
 QuantFuncMathCore.h:428
 QuantFuncMathCore.h:429
 QuantFuncMathCore.h:430
 QuantFuncMathCore.h:431
 QuantFuncMathCore.h:432
 QuantFuncMathCore.h:433
 QuantFuncMathCore.h:434
 QuantFuncMathCore.h:435
 QuantFuncMathCore.h:436
 QuantFuncMathCore.h:437
 QuantFuncMathCore.h:438
 QuantFuncMathCore.h:439
 QuantFuncMathCore.h:440
 QuantFuncMathCore.h:441
 QuantFuncMathCore.h:442
 QuantFuncMathCore.h:443
 QuantFuncMathCore.h:444
 QuantFuncMathCore.h:445
 QuantFuncMathCore.h:446
 QuantFuncMathCore.h:447
 QuantFuncMathCore.h:448
 QuantFuncMathCore.h:449
 QuantFuncMathCore.h:450
 QuantFuncMathCore.h:451
 QuantFuncMathCore.h:452
 QuantFuncMathCore.h:453
 QuantFuncMathCore.h:454
 QuantFuncMathCore.h:455
 QuantFuncMathCore.h:456
 QuantFuncMathCore.h:457
 QuantFuncMathCore.h:458
 QuantFuncMathCore.h:459
 QuantFuncMathCore.h:460
 QuantFuncMathCore.h:461
 QuantFuncMathCore.h:462
 QuantFuncMathCore.h:463
 QuantFuncMathCore.h:464
 QuantFuncMathCore.h:465
 QuantFuncMathCore.h:466
 QuantFuncMathCore.h:467
 QuantFuncMathCore.h:468
 QuantFuncMathCore.h:469
 QuantFuncMathCore.h:470
 QuantFuncMathCore.h:471
 QuantFuncMathCore.h:472
 QuantFuncMathCore.h:473
 QuantFuncMathCore.h:474
 QuantFuncMathCore.h:475
 QuantFuncMathCore.h:476
 QuantFuncMathCore.h:477
 QuantFuncMathCore.h:478
 QuantFuncMathCore.h:479
 QuantFuncMathCore.h:480
 QuantFuncMathCore.h:481
 QuantFuncMathCore.h:482
 QuantFuncMathCore.h:483
 QuantFuncMathCore.h:484
 QuantFuncMathCore.h:485
 QuantFuncMathCore.h:486
 QuantFuncMathCore.h:487
 QuantFuncMathCore.h:488
 QuantFuncMathCore.h:489
 QuantFuncMathCore.h:490
 QuantFuncMathCore.h:491
 QuantFuncMathCore.h:492
 QuantFuncMathCore.h:493
 QuantFuncMathCore.h:494
 QuantFuncMathCore.h:495
 QuantFuncMathCore.h:496
 QuantFuncMathCore.h:497
 QuantFuncMathCore.h:498
 QuantFuncMathCore.h:499
 QuantFuncMathCore.h:500
 QuantFuncMathCore.h:501
 QuantFuncMathCore.h:502
 QuantFuncMathCore.h:503
 QuantFuncMathCore.h:504
 QuantFuncMathCore.h:505
 QuantFuncMathCore.h:506
 QuantFuncMathCore.h:507
 QuantFuncMathCore.h:508
 QuantFuncMathCore.h:509
 QuantFuncMathCore.h:510
 QuantFuncMathCore.h:511
 QuantFuncMathCore.h:512
 QuantFuncMathCore.h:513
 QuantFuncMathCore.h:514
 QuantFuncMathCore.h:515
 QuantFuncMathCore.h:516
 QuantFuncMathCore.h:517
 QuantFuncMathCore.h:518
 QuantFuncMathCore.h:519
 QuantFuncMathCore.h:520
 QuantFuncMathCore.h:521
 QuantFuncMathCore.h:522
 QuantFuncMathCore.h:523
 QuantFuncMathCore.h:524
 QuantFuncMathCore.h:525
 QuantFuncMathCore.h:526
 QuantFuncMathCore.h:527
 QuantFuncMathCore.h:528
 QuantFuncMathCore.h:529
 QuantFuncMathCore.h:530
 QuantFuncMathCore.h:531
 QuantFuncMathCore.h:532
 QuantFuncMathCore.h:533
 QuantFuncMathCore.h:534
 QuantFuncMathCore.h:535
 QuantFuncMathCore.h:536
 QuantFuncMathCore.h:537
 QuantFuncMathCore.h:538
 QuantFuncMathCore.h:539
 QuantFuncMathCore.h:540
 QuantFuncMathCore.h:541
 QuantFuncMathCore.h:542
 QuantFuncMathCore.h:543
 QuantFuncMathCore.h:544
 QuantFuncMathCore.h:545
 QuantFuncMathCore.h:546
 QuantFuncMathCore.h:547
 QuantFuncMathCore.h:548
 QuantFuncMathCore.h:549
 QuantFuncMathCore.h:550
 QuantFuncMathCore.h:551
 QuantFuncMathCore.h:552
 QuantFuncMathCore.h:553
 QuantFuncMathCore.h:554
 QuantFuncMathCore.h:555
 QuantFuncMathCore.h:556
 QuantFuncMathCore.h:557
 QuantFuncMathCore.h:558
 QuantFuncMathCore.h:559
 QuantFuncMathCore.h:560
 QuantFuncMathCore.h:561
 QuantFuncMathCore.h:562
 QuantFuncMathCore.h:563
 QuantFuncMathCore.h:564
 QuantFuncMathCore.h:565
 QuantFuncMathCore.h:566
 QuantFuncMathCore.h:567
 QuantFuncMathCore.h:568
 QuantFuncMathCore.h:569
 QuantFuncMathCore.h:570
 QuantFuncMathCore.h:571
 QuantFuncMathCore.h:572
 QuantFuncMathCore.h:573
 QuantFuncMathCore.h:574
 QuantFuncMathCore.h:575
 QuantFuncMathCore.h:576
 QuantFuncMathCore.h:577
 QuantFuncMathCore.h:578
 QuantFuncMathCore.h:579
 QuantFuncMathCore.h:580
 QuantFuncMathCore.h:581
 QuantFuncMathCore.h:582
 QuantFuncMathCore.h:583
 QuantFuncMathCore.h:584
 QuantFuncMathCore.h:585
 QuantFuncMathCore.h:586
 QuantFuncMathCore.h:587
 QuantFuncMathCore.h:588
 QuantFuncMathCore.h:589
 QuantFuncMathCore.h:590
 QuantFuncMathCore.h:591
 QuantFuncMathCore.h:592
 QuantFuncMathCore.h:593
 QuantFuncMathCore.h:594
 QuantFuncMathCore.h:595
 QuantFuncMathCore.h:596
 QuantFuncMathCore.h:597
 QuantFuncMathCore.h:598
 QuantFuncMathCore.h:599
 QuantFuncMathCore.h:600
 QuantFuncMathCore.h:601
 QuantFuncMathCore.h:602
 QuantFuncMathCore.h:603
 QuantFuncMathCore.h:604
 QuantFuncMathCore.h:605
 QuantFuncMathCore.h:606
 QuantFuncMathCore.h:607
 QuantFuncMathCore.h:608
 QuantFuncMathCore.h:609
 QuantFuncMathCore.h:610
 QuantFuncMathCore.h:611
 QuantFuncMathCore.h:612
 QuantFuncMathCore.h:613
 QuantFuncMathCore.h:614
 QuantFuncMathCore.h:615
 QuantFuncMathCore.h:616
 QuantFuncMathCore.h:617
 QuantFuncMathCore.h:618
 QuantFuncMathCore.h:619
 QuantFuncMathCore.h:620
 QuantFuncMathCore.h:621
 QuantFuncMathCore.h:622
 QuantFuncMathCore.h:623
 QuantFuncMathCore.h:624
 QuantFuncMathCore.h:625
 QuantFuncMathCore.h:626
 QuantFuncMathCore.h:627
 QuantFuncMathCore.h:628
 QuantFuncMathCore.h:629
 QuantFuncMathCore.h:630
 QuantFuncMathCore.h:631
 QuantFuncMathCore.h:632
 QuantFuncMathCore.h:633
 QuantFuncMathCore.h:634
 QuantFuncMathCore.h:635