// @(#)root/mathcore:$Id$ // Authors: L. Moneta, A. Zsenei 08/2005 // Authors: Andras Zsenei & Lorenzo Moneta 08/2005 /********************************************************************** * * * Copyright (c) 2005 , LCG ROOT MathLib Team * * * * * **********************************************************************/ #if defined(__CINT__) && !defined(__MAKECINT__) // avoid to include header file when using CINT #ifndef _WIN32 #include "../lib/libMathCore.so" #else #include "../bin/libMathCore.dll" #endif #else #ifndef ROOT_Math_QuantFuncMathCore #define ROOT_Math_QuantFuncMathCore namespace ROOT { namespace Math { /** @defgroup QuantFunc Quantile Functions * @ingroup StatFunc * * Inverse functions of the cumulative distribution functions * and the inverse of the complement of the cumulative distribution functions * for various distributions. * The functions with the extension <em>_quantile</em> calculate the * inverse of the <em>_cdf</em> function, the * lower tail integral of the probability density function * \f$D^{-1}(z)\f$ where * * \f[ D(x) = \int_{-\infty}^{x} p(x') dx' \f] * * while those with the <em>_quantile_c</em> extension calculate the * inverse of the <em>_cdf_c</em> functions, the upper tail integral of the probability * density function \f$D^{-1}(z) \f$ where * * \f[ D(x) = \int_{x}^{+\infty} p(x') dx' \f] * * These functions are defined in the header file <em>Math/ProbFunc.h<em> or in the global one * including all statistical dunctions <em>Math/DistFunc.h<em> * * * <strong>NOTE:</strong> In the old releases (< 5.14) the <em>_quantile</em> functions were called * <em>_quant_inv</em> and the <em>_quantile_c</em> functions were called * <em>_prob_inv</em>. * These names are currently kept for backward compatibility, but * their usage is deprecated. * */ /** @name Quantile Functions from MathCore * The implementation is provided in MathCore and for the majority of the function comes from * <A HREF="http://www.netlib.org/cephes">Cephes</A>. */ //@{ /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the upper tail of the beta distribution (#beta_cdf_c). It is implemented using the function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>. @ingroup QuantFunc */ double beta_quantile(double x, double a, double b); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the lower tail of the beta distribution (#beta_cdf). It is implemented using the function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>. @ingroup QuantFunc */ double beta_quantile_c(double x, double a, double b); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the upper tail of the Cauchy distribution (#cauchy_cdf_c) which is also called Lorentzian distribution. For detailed description see <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html"> Mathworld</A>. @ingroup QuantFunc */ double cauchy_quantile_c(double z, double b); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the lower tail of the Cauchy distribution (#cauchy_cdf) which is also called Breit-Wigner or Lorentzian distribution. For detailed description see <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html"> Mathworld</A>. The implementation used is that of <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC294">GSL</A>. @ingroup QuantFunc */ double cauchy_quantile(double z, double b); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the upper tail of the Breit-Wigner distribution (#breitwigner_cdf_c) which is similar to the Cauchy distribution. For detailed description see <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html"> Mathworld</A>. It is evaluated using the same implementation of #cauchy_quantile_c. @ingroup QuantFunc */ inline double breitwigner_quantile_c(double z, double gamma) { return cauchy_quantile_c(z, gamma/2.0); } /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the lower tail of the Breit_Wigner distribution (#breitwigner_cdf) which is similar to the Cauchy distribution. For detailed description see <A HREF="http://mathworld.wolfram.com/CauchyDistribution.html"> Mathworld</A>. It is evaluated using the same implementation of #cauchy_quantile. @ingroup QuantFunc */ inline double breitwigner_quantile(double z, double gamma) { return cauchy_quantile(z, gamma/2.0); } /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the upper tail of the \f$\chi^2\f$ distribution with \f$r\f$ degrees of freedom (#chisquared_cdf_c). For detailed description see <A HREF="http://mathworld.wolfram.com/Chi-SquaredDistribution.html"> Mathworld</A>. It is implemented using the inverse of the incomplete complement gamma function, using the function igami from <A HREF="http://www.netlib.org/cephes">Cephes</A>. @ingroup QuantFunc */ double chisquared_quantile_c(double z, double r); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the lower tail of the \f$\chi^2\f$ distribution with \f$r\f$ degrees of freedom (#chisquared_cdf). For detailed description see <A HREF="http://mathworld.wolfram.com/Chi-SquaredDistribution.html"> Mathworld</A>. It is implemented using chisquared_quantile_c, therefore is not very precise for small z. It is reccomended to use the MathMore function (ROOT::MathMore::chisquared_quantile )implemented using GSL @ingroup QuantFunc */ double chisquared_quantile(double z, double r); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the upper tail of the exponential distribution (#exponential_cdf_c). For detailed description see <A HREF="http://mathworld.wolfram.com/ExponentialDistribution.html"> Mathworld</A>. @ingroup QuantFunc */ double exponential_quantile_c(double z, double lambda); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the lower tail of the exponential distribution (#exponential_cdf). For detailed description see <A HREF="http://mathworld.wolfram.com/ExponentialDistribution.html"> Mathworld</A>. @ingroup QuantFunc */ double exponential_quantile(double z, double lambda); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the lower tail of the f distribution (#fdistribution_cdf). For detailed description see <A HREF="http://mathworld.wolfram.com/F-Distribution.html"> Mathworld</A>. It is implemented using the inverse of the incomplete beta function, function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>. @ingroup QuantFunc */ double fdistribution_quantile(double z, double n, double m); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the upper tail of the f distribution (#fdistribution_cdf_c). For detailed description see <A HREF="http://mathworld.wolfram.com/F-Distribution.html"> Mathworld</A>. It is implemented using the inverse of the incomplete beta function, function incbi from <A HREF="http://www.netlib.org/cephes">Cephes</A>. @ingroup QuantFunc */ double fdistribution_quantile_c(double z, double n, double m); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the upper tail of the gamma distribution (#gamma_cdf_c). For detailed description see <A HREF="http://mathworld.wolfram.com/GammaDistribution.html"> Mathworld</A>. The implementation used is that of <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC300">GSL</A>. It is implemented using the function igami taken from <A HREF="http://www.netlib.org/cephes">Cephes</A>. @ingroup QuantFunc */ double gamma_quantile_c(double z, double alpha, double theta); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the lower tail of the gamma distribution (#gamma_cdf). For detailed description see <A HREF="http://mathworld.wolfram.com/GammaDistribution.html"> Mathworld</A>. It is implemented using chisquared_quantile_c, therefore is not very precise for small z. For this special cases it is reccomended to use the MathMore function ROOT::MathMore::gamma_quantile implemented using GSL @ingroup QuantFunc */ double gamma_quantile(double z, double alpha, double theta); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the upper tail of the normal (Gaussian) distribution (#gaussian_cdf_c). For detailed description see <A HREF="http://mathworld.wolfram.com/NormalDistribution.html"> Mathworld</A>. It can also be evaluated using #normal_quantile_c which will call the same implementation. @ingroup QuantFunc */ double gaussian_quantile_c(double z, double sigma); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the lower tail of the normal (Gaussian) distribution (#gaussian_cdf). For detailed description see <A HREF="http://mathworld.wolfram.com/NormalDistribution.html"> Mathworld</A>. It can also be evaluated using #normal_quantile which will call the same implementation. It is implemented using the function ROOT::Math::Cephes::ndtri taken from <A HREF="http://www.netlib.org/cephes">Cephes</A>. @ingroup QuantFunc */ double gaussian_quantile(double z, double sigma); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the upper tail of the lognormal distribution (#lognormal_cdf_c). For detailed description see <A HREF="http://mathworld.wolfram.com/LogNormalDistribution.html"> Mathworld</A>. The implementation used is that of <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC302">GSL</A>. @ingroup QuantFunc */ double lognormal_quantile_c(double x, double m, double s); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the lower tail of the lognormal distribution (#lognormal_cdf). For detailed description see <A HREF="http://mathworld.wolfram.com/LogNormalDistribution.html"> Mathworld</A>. The implementation used is that of <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC302">GSL</A>. @ingroup QuantFunc */ double lognormal_quantile(double x, double m, double s); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the upper tail of the normal (Gaussian) distribution (#normal_cdf_c). For detailed description see <A HREF="http://mathworld.wolfram.com/NormalDistribution.html"> Mathworld</A>. It can also be evaluated using #gaussian_quantile_c which will call the same implementation. It is implemented using the function ROOT::Math::Cephes::ndtri taken from <A HREF="http://www.netlib.org/cephes">Cephes</A>. @ingroup QuantFunc */ double normal_quantile_c(double z, double sigma); /// alternative name for same function inline double gaussian_quantile_c(double z, double sigma) { return normal_quantile_c(z,sigma); } /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the lower tail of the normal (Gaussian) distribution (#normal_cdf). For detailed description see <A HREF="http://mathworld.wolfram.com/NormalDistribution.html"> Mathworld</A>. It can also be evaluated using #gaussian_quantile which will call the same implementation. It is implemented using the function ROOT::Math::Cephes::ndtri taken from <A HREF="http://www.netlib.org/cephes">Cephes</A>. @ingroup QuantFunc */ double normal_quantile(double z, double sigma); /// alternative name for same function inline double gaussian_quantile(double z, double sigma) { return normal_quantile(z,sigma); } #ifdef LATER // t quantiles are still in MathMore /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the upper tail of Student's t-distribution (#tdistribution_cdf_c). For detailed description see <A HREF="http://mathworld.wolfram.com/Studentst-Distribution.html"> Mathworld</A>. The implementation used is that of <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC305">GSL</A>. @ingroup QuantFunc */ double tdistribution_quantile_c(double z, double r); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the lower tail of Student's t-distribution (#tdistribution_cdf). For detailed description see <A HREF="http://mathworld.wolfram.com/Studentst-Distribution.html"> Mathworld</A>. The implementation used is that of <A HREF="http://www.gnu.org/software/gsl/manual/gsl-ref_19.html#SEC305">GSL</A>. @ingroup QuantFunc */ double tdistribution_quantile(double z, double r); #endif /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the upper tail of the uniform (flat) distribution (#uniform_cdf_c). For detailed description see <A HREF="http://mathworld.wolfram.com/UniformDistribution.html"> Mathworld</A>. @ingroup QuantFunc */ double uniform_quantile_c(double z, double a, double b); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the lower tail of the uniform (flat) distribution (#uniform_cdf). For detailed description see <A HREF="http://mathworld.wolfram.com/UniformDistribution.html"> Mathworld</A>. @ingroup QuantFunc */ double uniform_quantile(double z, double a, double b); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the lower tail of the Landau distribution (#landau_cdf). For detailed description see K.S. Kölbig and B. Schorr, A program package for the Landau distribution, <A HREF="http://dx.doi.org/10.1016/0010-4655(84)90085-7">Computer Phys. Comm. 31 (1984) 97-111</A> <A HREF="http://dx.doi.org/10.1016/j.cpc.2008.03.002">[Erratum-ibid. 178 (2008) 972]</A>. The same algorithms as in <A HREF="http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/g110/top.html"> CERNLIB</A> (RANLAN) is used. @param z The argument \f$z\f$ @param xi The width parameter \f$\xi\f$ @ingroup QuantFunc */ double landau_quantile(double z, double xi = 1); /** Inverse (\f$D^{-1}(z)\f$) of the cumulative distribution function of the upper tail of the landau distribution (#landau_cdf_c). Implemented using #landau_quantile @param z The argument \f$z\f$ @param xi The width parameter \f$\xi\f$ @ingroup QuantFunc */ double landau_quantile_c(double z, double xi = 1); #ifdef HAVE_OLD_STAT_FUNC //@} /** @name Backward compatible functions */ inline double breitwigner_prob_inv(double x, double gamma) { return breitwigner_quantile_c(x,gamma); } inline double breitwigner_quant_inv(double x, double gamma) { return breitwigner_quantile(x,gamma); } inline double cauchy_prob_inv(double x, double b) { return cauchy_quantile_c(x,b); } inline double cauchy_quant_inv(double x, double b) { return cauchy_quantile (x,b); } inline double exponential_prob_inv(double x, double lambda) { return exponential_quantile_c(x, lambda ); } inline double exponential_quant_inv(double x, double lambda) { return exponential_quantile (x, lambda ); } inline double gaussian_prob_inv(double x, double sigma) { return gaussian_quantile_c( x, sigma ); } inline double gaussian_quant_inv(double x, double sigma) { return gaussian_quantile ( x, sigma ); } inline double lognormal_prob_inv(double x, double m, double s) { return lognormal_quantile_c( x, m, s ); } inline double lognormal_quant_inv(double x, double m, double s) { return lognormal_quantile ( x, m, s ); } inline double normal_prob_inv(double x, double sigma) { return normal_quantile_c( x, sigma ); } inline double normal_quant_inv(double x, double sigma) { return normal_quantile ( x, sigma ); } inline double uniform_prob_inv(double x, double a, double b) { return uniform_quantile_c( x, a, b ); } inline double uniform_quant_inv(double x, double a, double b) { return uniform_quantile ( x, a, b ); } inline double chisquared_prob_inv(double x, double r) { return chisquared_quantile_c(x, r ); } inline double gamma_prob_inv(double x, double alpha, double theta) { return gamma_quantile_c (x, alpha, theta ); } #endif } // namespace Math } // namespace ROOT #endif // ROOT_Math_QuantFuncMathCore #endif // if defined (__CINT__) && !defined(__MAKECINT__)