ROOT logo
// @(#)root/geom:$Id$
// Author: Andrei Gheata   28/04/04

/*************************************************************************
 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/


////////////////////////////////////////////////////////////////////////////////
//   TGeoHelix - class representing a helix curve
//
//  A helix is a curve defined by the following equations:
//     x = (1/c) * COS(q*phi)
//     y = (1/c) * SIN(q*phi)
//     z = s * alfa
// where:
//     c = 1/Rxy  - curvature in XY plane
//     phi        - phi angle 
//     S = 2*PI*s - vertical separation between helix loops
//     q = +/- 1  - (+)=left-handed, (-)=right-handed
//
//   In particular, a helix describes the trajectory of a charged particle in magnetic 
// field. In such case, the helix is right-handed for negative particle charge.
// To define a helix, one must define:
//   - the curvature - positive defined
//   - the Z step made after one full turn of the helix
//   - the particle charge sign
//   - the initial particle position and direction (force normalization to unit)
//   - the magnetic field direction
//
// A helix provides:
//   - propagation to a given Z position (in global frame)
//   Double_t *point = TGeoHelix::PropagateToZ(Double_t z);
//   - propagation to an arbitrary plane, returning also the new point
//   - propagation in a geometry until the next crossed surface
//   - computation of the total track length along a helix

#include "TMath.h"
#include "TGeoShape.h"
#include "TGeoMatrix.h"
#include "TGeoHelix.h"

ClassImp(TGeoHelix)

//_____________________________________________________________________________
TGeoHelix::TGeoHelix()
{ 
// Dummy constructor
   fC    = 0.;
   fS    = 0.;
   fStep = 0.;
   fPhi  = 0.;
   fPointInit[0] = fPointInit[1] = fPointInit[2] = 0.;
   fDirInit[0] = fDirInit[1] = fDirInit[2] = 0.;
   fPoint[0] = fPoint[1] = fPoint[2] = 0.;
   fDir[0] = fDir[1] = fDir[2] = 0.;
   fB[0] = fB[1] = fB[2] = 0.;
   fQ    = 0;
   fMatrix = 0;
   TObject::SetBit(kHelixNeedUpdate, kTRUE);   
   TObject::SetBit(kHelixStraigth, kFALSE);
   TObject::SetBit(kHelixCircle, kFALSE);
}

//_____________________________________________________________________________
TGeoHelix::TGeoHelix(Double_t curvature, Double_t hstep, Int_t charge)
{ 
// Normal constructor
   SetXYcurvature(curvature);
   SetHelixStep(hstep);
   fQ    = 0;
   SetCharge(charge);
   fStep = 0.;
   fPhi  = 0.;
   fPointInit[0] = fPointInit[1] = fPointInit[2] = 0.;
   fDirInit[0] = fDirInit[1] = fDirInit[2] = 0.;
   fPoint[0] = fPoint[1] = fPoint[2] = 0.;
   fDir[0] = fDir[1] = fDir[2] = 0.;
   fB[0] = fB[1] = fB[2] = 0.;
   fMatrix    = new TGeoHMatrix();
   TObject::SetBit(kHelixNeedUpdate, kTRUE);   
   TObject::SetBit(kHelixStraigth, kFALSE);
   TObject::SetBit(kHelixCircle, kFALSE);
}

//_____________________________________________________________________________
TGeoHelix::~TGeoHelix()
{
// Destructor
   if (fMatrix)    delete fMatrix;
}

//_____________________________________________________________________________
Double_t TGeoHelix::ComputeSafeStep(Double_t epsil) const
{
// Compute safe linear step that can be made such that the error
// between linear-helix extrapolation is less than EPSIL.
   if (TestBit(kHelixStraigth) || TMath::Abs(fC)<TGeoShape::Tolerance()) return 1.E30;
   Double_t c = GetTotalCurvature();
   Double_t step = TMath::Sqrt(2.*epsil/c);
   return step;
}   

//_____________________________________________________________________________
void TGeoHelix::InitPoint(Double_t x0, Double_t y0, Double_t z0)
{
// Initialize coordinates of a point on the helix
   fPointInit[0] = x0;
   fPointInit[1] = y0;
   fPointInit[2] = z0;
   TObject::SetBit(kHelixNeedUpdate, kTRUE);   
}   

//_____________________________________________________________________________
void TGeoHelix::InitPoint (Double_t *point)
{
// Set initial point on the helix.
   InitPoint(point[0], point[1], point[2]);
}

//_____________________________________________________________________________
void TGeoHelix::InitDirection(Double_t dirx, Double_t diry, Double_t dirz, Bool_t is_normalized)
{
// Initialize particle direction (tangent on the helix in initial point)   
   fDirInit[0] = dirx;
   fDirInit[1] = diry;
   fDirInit[2] = dirz;
   TObject::SetBit(kHelixNeedUpdate, kTRUE);
   if (is_normalized) return;
   Double_t norm = 1./TMath::Sqrt(dirx*dirx+diry*diry+dirz*dirz);
   for (Int_t i=0; i<3; i++) fDirInit[i] *= norm;   
}   
   
//_____________________________________________________________________________
void TGeoHelix::InitDirection(Double_t *dir, Bool_t is_normalized)
{
// Initialize particle direction (tangent on the helix in initial point)   
   InitDirection(dir[0], dir[1], dir[2], is_normalized);
}     

//_____________________________________________________________________________
Double_t TGeoHelix::GetTotalCurvature() const
{
// Compute helix total curvature
   Double_t k = fC/(1.+fC*fC*fS*fS);
   return k;
}

//_____________________________________________________________________________
void TGeoHelix::SetXYcurvature(Double_t curvature)
{
// Set XY curvature: c = 1/Rxy
   fC    = curvature;
   TObject::SetBit(kHelixNeedUpdate, kTRUE);
   if (fC < 0) {
      Error("SetXYcurvature", "Curvature %f not valid. Must be positive.", fC);
      return;
   } 
   if (TMath::Abs(fC) < TGeoShape::Tolerance()) {
      Warning("SetXYcurvature", "Curvature is zero. Helix is a straigth line.");      
      TObject::SetBit(kHelixStraigth, kTRUE);
   }   
}  

//_____________________________________________________________________________
void TGeoHelix::SetCharge(Int_t charge)
{
// Positive charge means left-handed helix.   
   if (charge==0) {
      Error("ctor", "charge cannot be 0 - define it positive for a left-handed helix, negative otherwise");
      return;
   }   
   Int_t q = TMath::Sign(1, charge);
   if (q == fQ) return;
   fQ = q;
   TObject::SetBit(kHelixNeedUpdate, kTRUE);
}   

//_____________________________________________________________________________
void TGeoHelix::SetField(Double_t bx, Double_t by, Double_t bz, Bool_t is_normalized)
{
// Initialize particle direction (tangent on the helix in initial point)   
   fB[0] = bx;
   fB[1] = by;
   fB[2] = bz;
   TObject::SetBit(kHelixNeedUpdate, kTRUE);
   if (is_normalized) return;
   Double_t norm = 1./TMath::Sqrt(bx*bx+by*by+bz*bz);
   for (Int_t i=0; i<3; i++) fB[i] *= norm;   
}

//_____________________________________________________________________________
void TGeoHelix::SetHelixStep(Double_t step)
{
// Set Z step of the helix on a complete turn. Positive or null.
   if (step < 0) {
      Error("ctor", "Z step %f not valid. Must be positive.", step);
      return;
   }   
   TObject::SetBit(kHelixNeedUpdate, kTRUE);
   fS    = 0.5*step/TMath::Pi();
   if (fS < TGeoShape::Tolerance()) TObject::SetBit(kHelixCircle, kTRUE);
}   

//_____________________________________________________________________________
void TGeoHelix::ResetStep()
{
// Reset current point/direction to initial values
   fStep = 0.;
   memcpy(fPoint, fPointInit, 3*sizeof(Double_t));
   memcpy(fDir, fDirInit, 3*sizeof(Double_t));
}   

//_____________________________________________________________________________
void TGeoHelix::Step(Double_t step)
{
// Make a step from current point along the helix and compute new point, direction and angle
// To reach a plane/ shape boundary, one has to:
//  1. Compute the safety to the plane/boundary
//  2. Define / update a helix according local field and particle state (position, direction, charge)
//  3. Compute the magnetic safety (maximum distance for which the field can be considered constant)
//  4. Call TGeoHelix::Step() having as argument the minimum between 1. and 3.
//  5. Repeat from 1. until the step to be made is small enough.
//  6. Add to the total step the distance along a straigth line from the last point
//     to the plane/shape boundary
   Int_t i;
   fStep += step;
   if (TObject::TestBit(kHelixStraigth)) {
      for (i=0; i<3; i++) {
         fPoint[i] = fPointInit[i]+fStep*fDirInit[i];
         fDir[i] = fDirInit[i];
      }   
      return;
   }
   if (TObject::TestBit(kHelixNeedUpdate)) UpdateHelix();
   Double_t r = 1./fC;
   fPhi = fStep/TMath::Sqrt(r*r+fS*fS);
   Double_t vect[3];
   vect[0] = r * TMath::Cos(fPhi);  
   vect[1] = -fQ * r * TMath::Sin(fPhi);  
   vect[2] = fS * fPhi;
   fMatrix->LocalToMaster(vect, fPoint);

   Double_t ddb = fDirInit[0]*fB[0]+fDirInit[1]*fB[1]+fDirInit[2]*fB[2];
   Double_t f = -TMath::Sqrt(1.-ddb*ddb);
   vect[0] = f*TMath::Sin(fPhi);
   vect[1] = fQ*f*TMath::Cos(fPhi);
   vect[2] = ddb;
   TMath::Normalize(vect);
   fMatrix->LocalToMasterVect(vect, fDir);   
}

//_____________________________________________________________________________
Double_t TGeoHelix::StepToPlane(Double_t *point, Double_t *norm) 
{
// Propagate initial point up to a given Z position in MARS.
   Double_t step = 0.;
   Double_t snext = 1.E30;
   Double_t dx, dy, dz;
   Double_t ddn, pdn;
   if (TObject::TestBit(kHelixNeedUpdate)) UpdateHelix();
   dx = point[0] - fPoint[0];
   dy = point[1] - fPoint[1];
   dz = point[2] - fPoint[2];
   pdn = dx*norm[0]+dy*norm[1]+dz*norm[2];
   ddn = fDir[0]*norm[0]+fDir[1]*norm[1]+fDir[2]*norm[2];
   if (TObject::TestBit(kHelixStraigth)) {
      // propagate straigth line to plane
      if ((pdn*ddn) <= 0) return snext;
      snext = pdn/ddn;
      Step(snext);
      return snext;
   }   
   
   Double_t r = 1./fC;
   Double_t dist;
   Double_t safety = TMath::Abs(pdn);
   Double_t safestep = ComputeSafeStep();
   snext = 1.E30;
   Bool_t approaching = (ddn*pdn>0)?kTRUE:kFALSE;
   if (approaching) snext = pdn/ddn;
   else if (safety > 2.*r) return snext;
   while (snext > safestep) {
      dist = TMath::Max(safety, safestep);
      Step(dist);
      step += dist;
      dx = point[0] - fPoint[0];
      dy = point[1] - fPoint[1];
      dz = point[2] - fPoint[2];
      pdn = dx*norm[0]+dy*norm[1]+dz*norm[2];
      ddn = fDir[0]*norm[0]+fDir[1]*norm[1]+fDir[2]*norm[2];
      safety = TMath::Abs(pdn);
      approaching = (ddn*pdn>0)?kTRUE:kFALSE;
      snext = 1.E30;
      if (approaching) snext = pdn/ddn;
      else if (safety > 2.*r) {
         ResetStep();
         return snext; 
      }   
   }
   step += snext;
   Step(snext);
   return step;
}

//_____________________________________________________________________________
void TGeoHelix::UpdateHelix()
{
// Update the local helix matrix.
   TObject::SetBit(kHelixNeedUpdate, kFALSE);
   fStep = 0.;
   memcpy(fPoint, fPointInit, 3*sizeof(Double_t));
   memcpy(fDir, fDirInit, 3*sizeof(Double_t));
   Double_t rot[9];
   Double_t tr[3];
   Double_t ddb = fDirInit[0]*fB[0]+fDirInit[1]*fB[1]+fDirInit[2]*fB[2];
   if ((1.-TMath::Abs(ddb))<TGeoShape::Tolerance() || TMath::Abs(fC)<TGeoShape::Tolerance()) {
      // helix is just a straigth line
      TObject::SetBit(kHelixStraigth, kTRUE);
      fMatrix->Clear();
      return;
   }   
   rot[2] = fB[0];
   rot[5] = fB[1];
   rot[8] = fB[2];
   if (ddb < 0) fS = -TMath::Abs(fS);
   Double_t fy = - fQ*TMath::Sqrt(1.-ddb*ddb);
   fy = 1./fy;
   rot[1] = fy*(fDirInit[0]-fB[0]*ddb);
   rot[4] = fy*(fDirInit[1]-fB[1]*ddb);
   rot[7] = fy*(fDirInit[2]-fB[2]*ddb);

   rot[0] = rot[4]*rot[8] - rot[7]*rot[5];
   rot[3] = rot[7]*rot[2] - rot[1]*rot[8];
   rot[6] = rot[1]*rot[5] - rot[4]*rot[2];
   
   tr[0] = fPointInit[0] - rot[0]/fC;
   tr[1] = fPointInit[1] - rot[3]/fC;
   tr[2] = fPointInit[2] - rot[6]/fC;
   
   fMatrix->SetTranslation(tr);
   fMatrix->SetRotation(rot);
   
}    
 TGeoHelix.cxx:1
 TGeoHelix.cxx:2
 TGeoHelix.cxx:3
 TGeoHelix.cxx:4
 TGeoHelix.cxx:5
 TGeoHelix.cxx:6
 TGeoHelix.cxx:7
 TGeoHelix.cxx:8
 TGeoHelix.cxx:9
 TGeoHelix.cxx:10
 TGeoHelix.cxx:11
 TGeoHelix.cxx:12
 TGeoHelix.cxx:13
 TGeoHelix.cxx:14
 TGeoHelix.cxx:15
 TGeoHelix.cxx:16
 TGeoHelix.cxx:17
 TGeoHelix.cxx:18
 TGeoHelix.cxx:19
 TGeoHelix.cxx:20
 TGeoHelix.cxx:21
 TGeoHelix.cxx:22
 TGeoHelix.cxx:23
 TGeoHelix.cxx:24
 TGeoHelix.cxx:25
 TGeoHelix.cxx:26
 TGeoHelix.cxx:27
 TGeoHelix.cxx:28
 TGeoHelix.cxx:29
 TGeoHelix.cxx:30
 TGeoHelix.cxx:31
 TGeoHelix.cxx:32
 TGeoHelix.cxx:33
 TGeoHelix.cxx:34
 TGeoHelix.cxx:35
 TGeoHelix.cxx:36
 TGeoHelix.cxx:37
 TGeoHelix.cxx:38
 TGeoHelix.cxx:39
 TGeoHelix.cxx:40
 TGeoHelix.cxx:41
 TGeoHelix.cxx:42
 TGeoHelix.cxx:43
 TGeoHelix.cxx:44
 TGeoHelix.cxx:45
 TGeoHelix.cxx:46
 TGeoHelix.cxx:47
 TGeoHelix.cxx:48
 TGeoHelix.cxx:49
 TGeoHelix.cxx:50
 TGeoHelix.cxx:51
 TGeoHelix.cxx:52
 TGeoHelix.cxx:53
 TGeoHelix.cxx:54
 TGeoHelix.cxx:55
 TGeoHelix.cxx:56
 TGeoHelix.cxx:57
 TGeoHelix.cxx:58
 TGeoHelix.cxx:59
 TGeoHelix.cxx:60
 TGeoHelix.cxx:61
 TGeoHelix.cxx:62
 TGeoHelix.cxx:63
 TGeoHelix.cxx:64
 TGeoHelix.cxx:65
 TGeoHelix.cxx:66
 TGeoHelix.cxx:67
 TGeoHelix.cxx:68
 TGeoHelix.cxx:69
 TGeoHelix.cxx:70
 TGeoHelix.cxx:71
 TGeoHelix.cxx:72
 TGeoHelix.cxx:73
 TGeoHelix.cxx:74
 TGeoHelix.cxx:75
 TGeoHelix.cxx:76
 TGeoHelix.cxx:77
 TGeoHelix.cxx:78
 TGeoHelix.cxx:79
 TGeoHelix.cxx:80
 TGeoHelix.cxx:81
 TGeoHelix.cxx:82
 TGeoHelix.cxx:83
 TGeoHelix.cxx:84
 TGeoHelix.cxx:85
 TGeoHelix.cxx:86
 TGeoHelix.cxx:87
 TGeoHelix.cxx:88
 TGeoHelix.cxx:89
 TGeoHelix.cxx:90
 TGeoHelix.cxx:91
 TGeoHelix.cxx:92
 TGeoHelix.cxx:93
 TGeoHelix.cxx:94
 TGeoHelix.cxx:95
 TGeoHelix.cxx:96
 TGeoHelix.cxx:97
 TGeoHelix.cxx:98
 TGeoHelix.cxx:99
 TGeoHelix.cxx:100
 TGeoHelix.cxx:101
 TGeoHelix.cxx:102
 TGeoHelix.cxx:103
 TGeoHelix.cxx:104
 TGeoHelix.cxx:105
 TGeoHelix.cxx:106
 TGeoHelix.cxx:107
 TGeoHelix.cxx:108
 TGeoHelix.cxx:109
 TGeoHelix.cxx:110
 TGeoHelix.cxx:111
 TGeoHelix.cxx:112
 TGeoHelix.cxx:113
 TGeoHelix.cxx:114
 TGeoHelix.cxx:115
 TGeoHelix.cxx:116
 TGeoHelix.cxx:117
 TGeoHelix.cxx:118
 TGeoHelix.cxx:119
 TGeoHelix.cxx:120
 TGeoHelix.cxx:121
 TGeoHelix.cxx:122
 TGeoHelix.cxx:123
 TGeoHelix.cxx:124
 TGeoHelix.cxx:125
 TGeoHelix.cxx:126
 TGeoHelix.cxx:127
 TGeoHelix.cxx:128
 TGeoHelix.cxx:129
 TGeoHelix.cxx:130
 TGeoHelix.cxx:131
 TGeoHelix.cxx:132
 TGeoHelix.cxx:133
 TGeoHelix.cxx:134
 TGeoHelix.cxx:135
 TGeoHelix.cxx:136
 TGeoHelix.cxx:137
 TGeoHelix.cxx:138
 TGeoHelix.cxx:139
 TGeoHelix.cxx:140
 TGeoHelix.cxx:141
 TGeoHelix.cxx:142
 TGeoHelix.cxx:143
 TGeoHelix.cxx:144
 TGeoHelix.cxx:145
 TGeoHelix.cxx:146
 TGeoHelix.cxx:147
 TGeoHelix.cxx:148
 TGeoHelix.cxx:149
 TGeoHelix.cxx:150
 TGeoHelix.cxx:151
 TGeoHelix.cxx:152
 TGeoHelix.cxx:153
 TGeoHelix.cxx:154
 TGeoHelix.cxx:155
 TGeoHelix.cxx:156
 TGeoHelix.cxx:157
 TGeoHelix.cxx:158
 TGeoHelix.cxx:159
 TGeoHelix.cxx:160
 TGeoHelix.cxx:161
 TGeoHelix.cxx:162
 TGeoHelix.cxx:163
 TGeoHelix.cxx:164
 TGeoHelix.cxx:165
 TGeoHelix.cxx:166
 TGeoHelix.cxx:167
 TGeoHelix.cxx:168
 TGeoHelix.cxx:169
 TGeoHelix.cxx:170
 TGeoHelix.cxx:171
 TGeoHelix.cxx:172
 TGeoHelix.cxx:173
 TGeoHelix.cxx:174
 TGeoHelix.cxx:175
 TGeoHelix.cxx:176
 TGeoHelix.cxx:177
 TGeoHelix.cxx:178
 TGeoHelix.cxx:179
 TGeoHelix.cxx:180
 TGeoHelix.cxx:181
 TGeoHelix.cxx:182
 TGeoHelix.cxx:183
 TGeoHelix.cxx:184
 TGeoHelix.cxx:185
 TGeoHelix.cxx:186
 TGeoHelix.cxx:187
 TGeoHelix.cxx:188
 TGeoHelix.cxx:189
 TGeoHelix.cxx:190
 TGeoHelix.cxx:191
 TGeoHelix.cxx:192
 TGeoHelix.cxx:193
 TGeoHelix.cxx:194
 TGeoHelix.cxx:195
 TGeoHelix.cxx:196
 TGeoHelix.cxx:197
 TGeoHelix.cxx:198
 TGeoHelix.cxx:199
 TGeoHelix.cxx:200
 TGeoHelix.cxx:201
 TGeoHelix.cxx:202
 TGeoHelix.cxx:203
 TGeoHelix.cxx:204
 TGeoHelix.cxx:205
 TGeoHelix.cxx:206
 TGeoHelix.cxx:207
 TGeoHelix.cxx:208
 TGeoHelix.cxx:209
 TGeoHelix.cxx:210
 TGeoHelix.cxx:211
 TGeoHelix.cxx:212
 TGeoHelix.cxx:213
 TGeoHelix.cxx:214
 TGeoHelix.cxx:215
 TGeoHelix.cxx:216
 TGeoHelix.cxx:217
 TGeoHelix.cxx:218
 TGeoHelix.cxx:219
 TGeoHelix.cxx:220
 TGeoHelix.cxx:221
 TGeoHelix.cxx:222
 TGeoHelix.cxx:223
 TGeoHelix.cxx:224
 TGeoHelix.cxx:225
 TGeoHelix.cxx:226
 TGeoHelix.cxx:227
 TGeoHelix.cxx:228
 TGeoHelix.cxx:229
 TGeoHelix.cxx:230
 TGeoHelix.cxx:231
 TGeoHelix.cxx:232
 TGeoHelix.cxx:233
 TGeoHelix.cxx:234
 TGeoHelix.cxx:235
 TGeoHelix.cxx:236
 TGeoHelix.cxx:237
 TGeoHelix.cxx:238
 TGeoHelix.cxx:239
 TGeoHelix.cxx:240
 TGeoHelix.cxx:241
 TGeoHelix.cxx:242
 TGeoHelix.cxx:243
 TGeoHelix.cxx:244
 TGeoHelix.cxx:245
 TGeoHelix.cxx:246
 TGeoHelix.cxx:247
 TGeoHelix.cxx:248
 TGeoHelix.cxx:249
 TGeoHelix.cxx:250
 TGeoHelix.cxx:251
 TGeoHelix.cxx:252
 TGeoHelix.cxx:253
 TGeoHelix.cxx:254
 TGeoHelix.cxx:255
 TGeoHelix.cxx:256
 TGeoHelix.cxx:257
 TGeoHelix.cxx:258
 TGeoHelix.cxx:259
 TGeoHelix.cxx:260
 TGeoHelix.cxx:261
 TGeoHelix.cxx:262
 TGeoHelix.cxx:263
 TGeoHelix.cxx:264
 TGeoHelix.cxx:265
 TGeoHelix.cxx:266
 TGeoHelix.cxx:267
 TGeoHelix.cxx:268
 TGeoHelix.cxx:269
 TGeoHelix.cxx:270
 TGeoHelix.cxx:271
 TGeoHelix.cxx:272
 TGeoHelix.cxx:273
 TGeoHelix.cxx:274
 TGeoHelix.cxx:275
 TGeoHelix.cxx:276
 TGeoHelix.cxx:277
 TGeoHelix.cxx:278
 TGeoHelix.cxx:279
 TGeoHelix.cxx:280
 TGeoHelix.cxx:281
 TGeoHelix.cxx:282
 TGeoHelix.cxx:283
 TGeoHelix.cxx:284
 TGeoHelix.cxx:285
 TGeoHelix.cxx:286
 TGeoHelix.cxx:287
 TGeoHelix.cxx:288
 TGeoHelix.cxx:289
 TGeoHelix.cxx:290
 TGeoHelix.cxx:291
 TGeoHelix.cxx:292
 TGeoHelix.cxx:293
 TGeoHelix.cxx:294
 TGeoHelix.cxx:295
 TGeoHelix.cxx:296
 TGeoHelix.cxx:297
 TGeoHelix.cxx:298
 TGeoHelix.cxx:299
 TGeoHelix.cxx:300
 TGeoHelix.cxx:301
 TGeoHelix.cxx:302
 TGeoHelix.cxx:303
 TGeoHelix.cxx:304
 TGeoHelix.cxx:305
 TGeoHelix.cxx:306
 TGeoHelix.cxx:307
 TGeoHelix.cxx:308
 TGeoHelix.cxx:309
 TGeoHelix.cxx:310
 TGeoHelix.cxx:311
 TGeoHelix.cxx:312
 TGeoHelix.cxx:313
 TGeoHelix.cxx:314
 TGeoHelix.cxx:315
 TGeoHelix.cxx:316
 TGeoHelix.cxx:317
 TGeoHelix.cxx:318
 TGeoHelix.cxx:319
 TGeoHelix.cxx:320
 TGeoHelix.cxx:321
 TGeoHelix.cxx:322
 TGeoHelix.cxx:323
 TGeoHelix.cxx:324
 TGeoHelix.cxx:325
 TGeoHelix.cxx:326
 TGeoHelix.cxx:327
 TGeoHelix.cxx:328
 TGeoHelix.cxx:329
 TGeoHelix.cxx:330
 TGeoHelix.cxx:331
 TGeoHelix.cxx:332
 TGeoHelix.cxx:333
 TGeoHelix.cxx:334
 TGeoHelix.cxx:335
 TGeoHelix.cxx:336
 TGeoHelix.cxx:337
 TGeoHelix.cxx:338
 TGeoHelix.cxx:339
 TGeoHelix.cxx:340
 TGeoHelix.cxx:341
 TGeoHelix.cxx:342
 TGeoHelix.cxx:343
 TGeoHelix.cxx:344
 TGeoHelix.cxx:345
 TGeoHelix.cxx:346
 TGeoHelix.cxx:347
 TGeoHelix.cxx:348