#include <iomanip>
#include "TMath.h"
#include "Riostream.h"
#include "TMatrix.h"
#include "TMatrixD.h"
#include "TMVA/VariableTransformBase.h"
#include "TMVA/MethodLD.h"
#include "TMVA/Tools.h"
#include "TMVA/Ranking.h"
#include "TMVA/Types.h"
#include "TMVA/PDF.h"
#include "TMVA/ClassifierFactory.h"
using std::vector;
REGISTER_METHOD(LD)
ClassImp(TMVA::MethodLD)
TMVA::MethodLD::MethodLD( const TString& jobName,
const TString& methodTitle,
DataSetInfo& dsi,
const TString& theOption,
TDirectory* theTargetDir ) :
MethodBase( jobName, Types::kLD, methodTitle, dsi, theOption, theTargetDir ),
fNRegOut ( 0 ),
fSumMatx ( 0 ),
fSumValMatx( 0 ),
fCoeffMatx ( 0 ),
fLDCoeff ( 0 )
{
}
TMVA::MethodLD::MethodLD( DataSetInfo& theData, const TString& theWeightFile, TDirectory* theTargetDir )
: MethodBase( Types::kLD, theData, theWeightFile, theTargetDir ),
fNRegOut ( 0 ),
fSumMatx ( 0 ),
fSumValMatx( 0 ),
fCoeffMatx ( 0 ),
fLDCoeff ( 0 )
{
}
void TMVA::MethodLD::Init( void )
{
if(DataInfo().GetNTargets()!=0) fNRegOut = DataInfo().GetNTargets();
else fNRegOut = 1;
fLDCoeff = new vector< vector< Double_t >* >(fNRegOut);
for (Int_t iout = 0; iout<fNRegOut; iout++){
(*fLDCoeff)[iout] = new std::vector<Double_t>( GetNvar()+1 );
}
SetSignalReferenceCut( 0.0 );
}
TMVA::MethodLD::~MethodLD( void )
{
if (fSumMatx) { delete fSumMatx; fSumMatx = 0; }
if (fSumValMatx) { delete fSumValMatx; fSumValMatx = 0; }
if (fCoeffMatx) { delete fCoeffMatx; fCoeffMatx = 0; }
if (fLDCoeff) {
for (vector< vector< Double_t >* >::iterator vi=fLDCoeff->begin(); vi!=fLDCoeff->end(); vi++){
if (*vi) { delete *vi; *vi = 0; }
}
delete fLDCoeff; fLDCoeff = 0;
}
}
Bool_t TMVA::MethodLD::HasAnalysisType( Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets )
{
if (type == Types::kClassification && numberClasses == 2) return kTRUE;
else if (type == Types::kRegression && numberTargets == 1) {
Log() << "regression with " << numberTargets << " targets.";
return kTRUE;
}
else return kFALSE;
}
void TMVA::MethodLD::Train( void )
{
GetSum();
GetSumVal();
GetLDCoeff();
PrintCoefficients();
}
Double_t TMVA::MethodLD::GetMvaValue( Double_t* err, Double_t* errUpper )
{
const Event* ev = GetEvent();
if (fRegressionReturnVal == NULL) fRegressionReturnVal = new vector< Float_t >();
fRegressionReturnVal->resize( fNRegOut );
for (Int_t iout = 0; iout<fNRegOut; iout++) {
(*fRegressionReturnVal)[iout] = (*(*fLDCoeff)[iout])[0] ;
int icoeff=0;
for (std::vector<Float_t>::const_iterator it = ev->GetValues().begin();it!=ev->GetValues().end();++it){
(*fRegressionReturnVal)[iout] += (*(*fLDCoeff)[iout])[++icoeff] * (*it);
}
}
NoErrorCalc(err, errUpper);
return (*fRegressionReturnVal)[0];
}
const std::vector< Float_t >& TMVA::MethodLD::GetRegressionValues()
{
const Event* ev = GetEvent();
if (fRegressionReturnVal == NULL) fRegressionReturnVal = new vector< Float_t >();
fRegressionReturnVal->resize( fNRegOut );
for (Int_t iout = 0; iout<fNRegOut; iout++) {
(*fRegressionReturnVal)[iout] = (*(*fLDCoeff)[iout])[0] ;
int icoeff = 0;
for (std::vector<Float_t>::const_iterator it = ev->GetValues().begin();it!=ev->GetValues().end();++it){
(*fRegressionReturnVal)[iout] += (*(*fLDCoeff)[iout])[++icoeff] * (*it);
}
}
Event* evT = new Event(*ev);
for (Int_t iout = 0; iout<fNRegOut; iout++) evT->SetTarget(iout,(*fRegressionReturnVal)[iout]);
const Event* evT2 = GetTransformationHandler().InverseTransform( evT );
fRegressionReturnVal->clear();
for (Int_t iout = 0; iout<fNRegOut; iout++) fRegressionReturnVal->push_back(evT2->GetTarget(iout));
delete evT;
return (*fRegressionReturnVal);
}
void TMVA::MethodLD::InitMatrices( void )
{
fSumMatx = new TMatrixD( GetNvar()+1, GetNvar()+1 );
fSumValMatx = new TMatrixD( GetNvar()+1, fNRegOut );
fCoeffMatx = new TMatrixD( GetNvar()+1, fNRegOut );
}
void TMVA::MethodLD::GetSum( void )
{
const UInt_t nvar = DataInfo().GetNVariables();
for (UInt_t ivar = 0; ivar<=nvar; ivar++){
for (UInt_t jvar = 0; jvar<=nvar; jvar++) (*fSumMatx)( ivar, jvar ) = 0;
}
Long64_t nevts = Data()->GetNEvents();
for (Int_t ievt=0; ievt<nevts; ievt++) {
const Event * ev = GetEvent(ievt);
Double_t weight = ev->GetWeight();
if (IgnoreEventsWithNegWeightsInTraining() && weight <= 0) continue;
(*fSumMatx)( 0, 0 ) += weight;
for (UInt_t ivar=0; ivar<nvar; ivar++) {
(*fSumMatx)( ivar+1, 0 ) += ev->GetValue( ivar ) * weight;
(*fSumMatx)( 0, ivar+1 ) += ev->GetValue( ivar ) * weight;
}
for (UInt_t ivar=0; ivar<nvar; ivar++){
for (UInt_t jvar=0; jvar<nvar; jvar++){
(*fSumMatx)( ivar+1, jvar+1 ) += ev->GetValue( ivar ) * ev->GetValue( jvar ) * weight;
}
}
}
}
void TMVA::MethodLD::GetSumVal( void )
{
const UInt_t nvar = DataInfo().GetNVariables();
for (Int_t ivar = 0; ivar<fNRegOut; ivar++){
for (UInt_t jvar = 0; jvar<=nvar; jvar++){
(*fSumValMatx)(jvar,ivar) = 0;
}
}
for (Int_t ievt=0; ievt<Data()->GetNEvents(); ievt++) {
const Event* ev = GetEvent(ievt);
Double_t weight = ev->GetWeight();
if (IgnoreEventsWithNegWeightsInTraining() && weight <= 0) continue;
for (Int_t ivar=0; ivar<fNRegOut; ivar++) {
Double_t val = weight;
if (!DoRegression()){
val *= DataInfo().IsSignal(ev);
}else {
val *= ev->GetTarget( ivar );
}
(*fSumValMatx)( 0,ivar ) += val;
for (UInt_t jvar=0; jvar<nvar; jvar++) {
(*fSumValMatx)(jvar+1,ivar ) += ev->GetValue(jvar) * val;
}
}
}
}
void TMVA::MethodLD::GetLDCoeff( void )
{
const UInt_t nvar = DataInfo().GetNVariables();
for (Int_t ivar = 0; ivar<fNRegOut; ivar++){
TMatrixD invSum( *fSumMatx );
if ( TMath::Abs(invSum.Determinant()) < 10E-24 ) {
Log() << kWARNING << "<GetCoeff> matrix is almost singular with determinant="
<< TMath::Abs(invSum.Determinant())
<< " did you use the variables that are linear combinations or highly correlated?"
<< Endl;
}
if ( TMath::Abs(invSum.Determinant()) < 10E-120 ) {
Log() << kFATAL << "<GetCoeff> matrix is singular with determinant="
<< TMath::Abs(invSum.Determinant())
<< " did you use the variables that are linear combinations?"
<< Endl;
}
invSum.Invert();
fCoeffMatx = new TMatrixD( invSum * (*fSumValMatx));
for (UInt_t jvar = 0; jvar<nvar+1; jvar++) {
(*(*fLDCoeff)[ivar])[jvar] = (*fCoeffMatx)(jvar, ivar );
}
if (!DoRegression()) {
(*(*fLDCoeff)[ivar])[0]=0.0;
for (UInt_t jvar = 1; jvar<nvar+1; jvar++){
(*(*fLDCoeff)[ivar])[0]+=(*fCoeffMatx)(jvar,ivar)*(*fSumMatx)(0,jvar)/(*fSumMatx)( 0, 0 );
}
(*(*fLDCoeff)[ivar])[0]/=-2.0;
}
}
}
void TMVA::MethodLD::ReadWeightsFromStream( std::istream& istr )
{
for (Int_t iout=0; iout<fNRegOut; iout++){
for (UInt_t icoeff=0; icoeff<GetNvar()+1; icoeff++){
istr >> (*(*fLDCoeff)[iout])[icoeff];
}
}
}
void TMVA::MethodLD::AddWeightsXMLTo( void* parent ) const
{
void* wght = gTools().AddChild(parent, "Weights");
gTools().AddAttr( wght, "NOut", fNRegOut );
gTools().AddAttr( wght, "NCoeff", GetNvar()+1 );
for (Int_t iout=0; iout<fNRegOut; iout++) {
for (UInt_t icoeff=0; icoeff<GetNvar()+1; icoeff++) {
void* coeffxml = gTools().AddChild( wght, "Coefficient" );
gTools().AddAttr( coeffxml, "IndexOut", iout );
gTools().AddAttr( coeffxml, "IndexCoeff", icoeff );
gTools().AddAttr( coeffxml, "Value", (*(*fLDCoeff)[iout])[icoeff] );
}
}
}
void TMVA::MethodLD::ReadWeightsFromXML( void* wghtnode )
{
UInt_t ncoeff;
gTools().ReadAttr( wghtnode, "NOut", fNRegOut );
gTools().ReadAttr( wghtnode, "NCoeff", ncoeff );
if (ncoeff != GetNvar()+1) Log() << kFATAL << "Mismatch in number of output variables/coefficients: "
<< ncoeff << " != " << GetNvar()+1 << Endl;
if (fLDCoeff) {
for (vector< vector< Double_t >* >::iterator vi=fLDCoeff->begin(); vi!=fLDCoeff->end(); vi++){
if (*vi) { delete *vi; *vi = 0; }
}
delete fLDCoeff; fLDCoeff = 0;
}
fLDCoeff = new vector< vector< Double_t >* >(fNRegOut);
for (Int_t ivar = 0; ivar<fNRegOut; ivar++) (*fLDCoeff)[ivar] = new std::vector<Double_t>( ncoeff );
void* ch = gTools().GetChild(wghtnode);
Double_t coeff;
Int_t iout, icoeff;
while (ch) {
gTools().ReadAttr( ch, "IndexOut", iout );
gTools().ReadAttr( ch, "IndexCoeff", icoeff );
gTools().ReadAttr( ch, "Value", coeff );
(*(*fLDCoeff)[iout])[icoeff] = coeff;
ch = gTools().GetNextChild(ch);
}
}
void TMVA::MethodLD::MakeClassSpecific( std::ostream& fout, const TString& className ) const
{
fout << " std::vector<double> fLDCoefficients;" << std::endl;
fout << "};" << std::endl;
fout << "" << std::endl;
fout << "inline void " << className << "::Initialize() " << std::endl;
fout << "{" << std::endl;
for (UInt_t ivar=0; ivar<GetNvar()+1; ivar++) {
Int_t dp = fout.precision();
fout << " fLDCoefficients.push_back( "
<< std::setprecision(12) << (*(*fLDCoeff)[0])[ivar]
<< std::setprecision(dp) << " );" << std::endl;
}
fout << std::endl;
fout << " // sanity check" << std::endl;
fout << " if (fLDCoefficients.size() != fNvars+1) {" << std::endl;
fout << " std::cout << \"Problem in class \\\"\" << fClassName << \"\\\"::Initialize: mismatch in number of input values\"" << std::endl;
fout << " << fLDCoefficients.size() << \" != \" << fNvars+1 << std::endl;" << std::endl;
fout << " fStatusIsClean = false;" << std::endl;
fout << " } " << std::endl;
fout << "}" << std::endl;
fout << std::endl;
fout << "inline double " << className << "::GetMvaValue__( const std::vector<double>& inputValues ) const" << std::endl;
fout << "{" << std::endl;
fout << " double retval = fLDCoefficients[0];" << std::endl;
fout << " for (size_t ivar = 1; ivar < fNvars+1; ivar++) {" << std::endl;
fout << " retval += fLDCoefficients[ivar]*inputValues[ivar-1];" << std::endl;
fout << " }" << std::endl;
fout << std::endl;
fout << " return retval;" << std::endl;
fout << "}" << std::endl;
fout << std::endl;
fout << "// Clean up" << std::endl;
fout << "inline void " << className << "::Clear() " << std::endl;
fout << "{" << std::endl;
fout << " // clear coefficients" << std::endl;
fout << " fLDCoefficients.clear(); " << std::endl;
fout << "}" << std::endl;
}
const TMVA::Ranking* TMVA::MethodLD::CreateRanking()
{
fRanking = new Ranking( GetName(), "Discr. power" );
for (UInt_t ivar=0; ivar<GetNvar(); ivar++) {
fRanking->AddRank( Rank( GetInputLabel(ivar), TMath::Abs((* (*fLDCoeff)[0])[ivar+1] )) );
}
return fRanking;
}
void TMVA::MethodLD::DeclareOptions()
{
AddPreDefVal(TString("LD"));
}
void TMVA::MethodLD::ProcessOptions()
{
if (HasTrainingTree()) InitMatrices();
}
void TMVA::MethodLD::PrintCoefficients( void )
{
Log() << kINFO << "Results for LD coefficients:" << Endl;
if (GetTransformationHandler().GetTransformationList().GetSize() != 0) {
Log() << kINFO << "NOTE: The coefficients must be applied to TRANFORMED variables" << Endl;
Log() << kINFO << " List of the transformation: " << Endl;
TListIter trIt(&GetTransformationHandler().GetTransformationList());
while (VariableTransformBase *trf = (VariableTransformBase*) trIt() ) {
Log() << kINFO << " -- " << trf->GetName() << Endl;
}
}
std::vector<TString> vars;
std::vector<Double_t> coeffs;
for (UInt_t ivar=0; ivar<GetNvar(); ivar++) {
vars .push_back( GetInputLabel(ivar) );
coeffs.push_back( (* (*fLDCoeff)[0])[ivar+1] );
}
vars .push_back( "(offset)" );
coeffs.push_back((* (*fLDCoeff)[0])[0] );
TMVA::gTools().FormattedOutput( coeffs, vars, "Variable" , "Coefficient", Log() );
if (IsNormalised()) {
Log() << kINFO << "NOTE: You have chosen to use the \"Normalise\" booking option. Hence, the" << Endl;
Log() << kINFO << " coefficients must be applied to NORMALISED (') variables as follows:" << Endl;
Int_t maxL = 0;
for (UInt_t ivar=0; ivar<GetNvar(); ivar++) if (GetInputLabel(ivar).Length() > maxL) maxL = GetInputLabel(ivar).Length();
for (UInt_t ivar=0; ivar<GetNvar(); ivar++) {
Log() << kINFO
<< std::setw(maxL+9) << TString("[") + GetInputLabel(ivar) + "]' = 2*("
<< std::setw(maxL+2) << TString("[") + GetInputLabel(ivar) + "]"
<< std::setw(3) << (GetXmin(ivar) > 0 ? " - " : " + ")
<< std::setw(6) << TMath::Abs(GetXmin(ivar)) << std::setw(3) << ")/"
<< std::setw(6) << (GetXmax(ivar) - GetXmin(ivar) )
<< std::setw(3) << " - 1"
<< Endl;
}
Log() << kINFO << "The TMVA Reader will properly account for this normalisation, but if the" << Endl;
Log() << kINFO << "LD classifier is applied outside the Reader, the transformation must be" << Endl;
Log() << kINFO << "implemented -- or the \"Normalise\" option is removed and LD retrained." << Endl;
Log() << kINFO << Endl;
}
}
void TMVA::MethodLD::GetHelpMessage() const
{
Log() << Endl;
Log() << gTools().Color("bold") << "--- Short description:" << gTools().Color("reset") << Endl;
Log() << Endl;
Log() << "Linear discriminants select events by distinguishing the mean " << Endl;
Log() << "values of the signal and background distributions in a trans- " << Endl;
Log() << "formed variable space where linear correlations are removed." << Endl;
Log() << "The LD implementation here is equivalent to the \"Fisher\" discriminant" << Endl;
Log() << "for classification, but also provides linear regression." << Endl;
Log() << Endl;
Log() << " (More precisely: the \"linear discriminator\" determines" << Endl;
Log() << " an axis in the (correlated) hyperspace of the input " << Endl;
Log() << " variables such that, when projecting the output classes " << Endl;
Log() << " (signal and background) upon this axis, they are pushed " << Endl;
Log() << " as far as possible away from each other, while events" << Endl;
Log() << " of a same class are confined in a close vicinity. The " << Endl;
Log() << " linearity property of this classifier is reflected in the " << Endl;
Log() << " metric with which \"far apart\" and \"close vicinity\" are " << Endl;
Log() << " determined: the covariance matrix of the discriminating" << Endl;
Log() << " variable space.)" << Endl;
Log() << Endl;
Log() << gTools().Color("bold") << "--- Performance optimisation:" << gTools().Color("reset") << Endl;
Log() << Endl;
Log() << "Optimal performance for the linear discriminant is obtained for " << Endl;
Log() << "linearly correlated Gaussian-distributed variables. Any deviation" << Endl;
Log() << "from this ideal reduces the achievable separation power. In " << Endl;
Log() << "particular, no discrimination at all is achieved for a variable" << Endl;
Log() << "that has the same sample mean for signal and background, even if " << Endl;
Log() << "the shapes of the distributions are very different. Thus, the linear " << Endl;
Log() << "discriminant often benefits from a suitable transformation of the " << Endl;
Log() << "input variables. For example, if a variable x in [-1,1] has a " << Endl;
Log() << "a parabolic signal distributions, and a uniform background" << Endl;
Log() << "distributions, their mean value is zero in both cases, leading " << Endl;
Log() << "to no separation. The simple transformation x -> |x| renders this " << Endl;
Log() << "variable powerful for the use in a linear discriminant." << Endl;
Log() << Endl;
Log() << gTools().Color("bold") << "--- Performance tuning via configuration options:" << gTools().Color("reset") << Endl;
Log() << Endl;
Log() << "<None>" << Endl;
}