// @(#)root/hist:$Id$ // Author: Frank Filthaut F.Filthaut@science.ru.nl 20/05/2002 // with additions by Bram Wijngaarden <dwijngaa@hef.kun.nl> /////////////////////////////////////////////////////////////////////////////// // // Fits MC fractions to data histogram (a la HMCMLL, see R. Barlow and C. Beeston, // Comp. Phys. Comm. 77 (1993) 219-228, and http://www.hep.man.ac.uk/~roger/hfrac.f). // // The virtue of this fit is that it takes into account both data and Monte Carlo // statistical uncertainties. The way in which this is done is through a standard // likelihood fit using Poisson statistics; however, the template (MC) predictions // are also varied within statistics, leading to additional contributions to the // overall likelihood. This leads to many more fit parameters (one per bin per // template), but the minimisation with respect to these additional parameters is // done analytically rather than introducing them as formal fit parameters. Some // special care needs to be taken in the case of bins with zero content. For more // details please see the original publication cited above. // // An example application of this fit is given below. For a TH1* histogram // ("data") fitted as the sum of three Monte Carlo sources ("mc"): // // { // TH1F *data; //data histogram // TH1F *mc0; // first MC histogram // TH1F *mc1; // second MC histogram // TH1F *mc2; // third MC histogram // .... // retrieve histograms // TObjArray *mc = new TObjArray(3); // MC histograms are put in this array // mc->Add(mc0); // mc->Add(mc1); // mc->Add(mc2); // TFractionFitter* fit = new TFractionFitter(data, mc); // initialise // fit->Constrain(1,0.0,1.0); // constrain fraction 1 to be between 0 and 1 // fit->SetRangeX(1,15); // use only the first 15 bins in the fit // Int_t status = fit->Fit(); // perform the fit // std::cout << "fit status: " << status << std::endl; // if (status == 0) { // check on fit status // TH1F* result = (TH1F*) fit->GetPlot(); // data->Draw("Ep"); // result->Draw("same"); // } // } // // // Assumptions // =========== // A few assumptions need to be made for the fit procedure to be carried out: // // (1) The total number of events in each template is not too small // (so that its Poisson uncertainty can be neglected). // (2) The number of events in each bin is much smaller than the total // number of events in each template (so that multinomial // uncertainties can be replaced with Poisson uncertainties). // // Biased fit uncertainties may result if these conditions are not fulfilled // (see e.g. arXiv:0803.2711). // // Instantiation // ============= // A fit object is instantiated through // TFractionFitter* fit = new TFractionFitter(data, mc); // A number of basic checks (intended to ensure that the template histograms // represent the same "kind" of distribution as the data one) are carried out. // The TVirtualFitter object is then addressed and all fit parameters (the // template fractions) declared (initially unbounded). // // Applying constraints // ==================== // Fit parameters can be constrained through // fit->Constrain(parameter #, lower bound, upper bound); // Setting lower bound = upper bound = 0 removes the constraint (a la Minuit); // however, a function // fit->Unconstrain(parameter #) // is also provided to simplify this. // // Setting parameter values // ======================== // The function // TVirtualFitter* vFit = fit->GetFitter(); // is provided for direct access to the TVirtualFitter object. This allows to // set and fix parameter values, and set step sizes directly. // // Restricting the fit range // ========================= // The fit range can be restricted through // fit->SetRangeX(first bin #, last bin #); // and freed using // fit->ReleaseRangeX(); // For 2D histograms the Y range can be similarly restricted using // fit->SetRangeY(first bin #, last bin #); // fit->ReleaseRangeY(); // and for 3D histograms also // fit->SetRangeZ(first bin #, last bin #); // fit->ReleaseRangeZ(); // It is also possible to exclude individual bins from the fit through // fit->ExcludeBin(bin #); // where the given bin number is assumed to follow the TH1::GetBin() numbering. // Any bins excluded in this way can be included again using the corresponding // fit->IncludeBin(bin #); // // Weights histograms // ================== // Weights histograms (for a motivation see the above publication) can be specified // for the individual MC sources through // fit->SetWeight(parameter #, pointer to weights histogram); // and unset by specifying a null pointer. // // Obtaining fit results // ===================== // The fit is carried out through // Int_t status = fit->Fit(); // where status is the code returned from the "MINIMIZE" command. For fits // that converged, parameter values and errors can be obtained through // fit->GetResult(parameter #, value, error); // and the histogram corresponding to the total Monte Carlo prediction (which // is not the same as a simple weighted sum of the input Monte Carlo distributions) // can be obtained by // TH1* result = fit->GetPlot(); // // Using different histograms // ========================== // It is possible to change the histogram being fitted through // fit->SetData(TH1* data); // and to change the template histogram for a given parameter number through // fit->SetMC(parameter #, TH1* MC); // This can speed up code in case of multiple data or template histograms; // however, it should be done with care as any settings are taken over from // the previous fit. In addition, neither the dimensionality nor the numbers of // bins of the histograms should change (in that case it is better to instantiate // a new TFractionFitter object). // // Errors // ====== // Any serious inconsistency results in an error. // /////////////////////////////////////////////////////////////////////////////// #include "Riostream.h" #include "TH1.h" #include "TMath.h" #include "TClass.h" #include "Fit/Fitter.h" #include "TFitResult.h" #include "Math/Functor.h" #include "TFractionFitter.h" ClassImp(TFractionFitter) //______________________________________________________________________________ TFractionFitter::TFractionFitter() : fFitDone(kFALSE), fLowLimitX(0), fHighLimitX(0), fLowLimitY(0), fHighLimitY(0), fLowLimitZ(0), fHighLimitZ(0), fData(0), fIntegralData(0), fPlot(0) { // TFractionFitter default constructor. fFractionFitter = 0; fIntegralMCs = 0; fFractions = 0; fNpfits = 0; fNDF = 0; fChisquare = 0; fNpar = 0; } //______________________________________________________________________________ TFractionFitter::TFractionFitter(TH1* data, TObjArray *MCs, Option_t *option) : fFitDone(kFALSE), fChisquare(0), fPlot(0) { // TFractionFitter constructor. Does a complete initialisation (including // consistency checks, default fit range as the whole histogram but without // under- and overflows, and declaration of the fit parameters). Note that // the histograms are not copied, only references are used. // Arguments: // data: histogram to be fitted // MCs: array of TH1* corresponding template distributions // Option: can be used to control the print level of the minimization algorithm // option = "Q" : quite - no message is printed // option = "V" : verbose - max print out // option = "" : default: print initial fraction values and result fData = data; // Default: include all of the histogram (but without under- and overflows) fLowLimitX = 1; fHighLimitX = fData->GetNbinsX(); if (fData->GetDimension() > 1) { fLowLimitY = 1; fHighLimitY = fData->GetNbinsY(); if (fData->GetDimension() > 2) { fLowLimitZ = 1; fHighLimitZ = fData->GetNbinsZ(); } } fNpar = MCs->GetEntries(); Int_t par; for (par = 0; par < fNpar; ++par) { fMCs.Add(MCs->At(par)); // Histogram containing template prediction TString s = Form("Prediction for MC sample %i",par); TH1* pred = (TH1*) ((TH1*)MCs->At(par))->Clone(s); pred->SetTitle(s); fAji.Add(pred); } fIntegralMCs = new Double_t[fNpar]; fFractions = new Double_t[fNpar]; CheckConsistency(); fWeights.Expand(fNpar); fFractionFitter = new ROOT::Fit::Fitter(); // set print level TString opt(option); opt.ToUpper(); if (opt.Contains("Q") ) { fFractionFitter->Config().MinimizerOptions().SetPrintLevel(0); } else if (opt.Contains("V") ) { fFractionFitter->Config().MinimizerOptions().SetPrintLevel(2); } else fFractionFitter->Config().MinimizerOptions().SetPrintLevel(1); Double_t defaultFraction = 1.0/((Double_t)fNpar); Double_t defaultStep = 0.01; // set the parameters std::vector<ROOT::Fit::ParameterSettings> & parameters = fFractionFitter->Config().ParamsSettings(); parameters.reserve(fNpar); for (par = 0; par < fNpar; ++par) { TString name("frac"); name += par; parameters.push_back(ROOT::Fit::ParameterSettings(name.Data(), defaultFraction, defaultStep) ); } if (fFractionFitter->Config().MinimizerOptions().ErrorDef() == 1.0 ) fFractionFitter->Config().MinimizerOptions().SetErrorDef(0.5); } //______________________________________________________________________________ TFractionFitter::~TFractionFitter() { // TFractionFitter default destructor if (fFractionFitter) delete fFractionFitter; delete[] fIntegralMCs; delete[] fFractions; if (fPlot) delete fPlot; fAji.Delete(); } //______________________________________________________________________________ void TFractionFitter::SetData(TH1* data) { // Change the histogram to be fitted to. Notes: // - Parameter constraints and settings are retained from a possible previous fit. // - Modifying the dimension or number of bins results in an error (in this case // rather instantiate a new TFractionFitter object) fData = data; fFitDone = kFALSE; CheckConsistency(); } //______________________________________________________________________________ void TFractionFitter::SetMC(Int_t parm, TH1* MC) { // Change the histogram for template number <parm>. Notes: // - Parameter constraints and settings are retained from a possible previous fit. // - Modifying the dimension or number of bins results in an error (in this case // rather instantiate a new TFractionFitter object) CheckParNo(parm); fMCs.RemoveAt(parm); fMCs.AddAt(MC,parm); fFitDone = kFALSE; CheckConsistency(); } //______________________________________________________________________________ void TFractionFitter::SetWeight(Int_t parm, TH1* weight) { // Set bin by bin weights for template number <parm> (the parameter numbering // follows that of the input template vector). // Weights can be "unset" by passing a null pointer. // Consistency of the weights histogram with the data histogram is checked at // this point, and an error in case of problems. CheckParNo(parm); if (fWeights[parm]) { fWeights.RemoveAt(parm); } if (weight) { if (weight->GetNbinsX() != fData->GetNbinsX() || (fData->GetDimension() > 1 && weight->GetNbinsY() != fData->GetNbinsY()) || (fData->GetDimension() > 2 && weight->GetNbinsZ() != fData->GetNbinsZ())) { Error("SetWeight","Inconsistent weights histogram for source %d", parm); return; } TString ts = "weight hist: "; ts += weight->GetName(); fWeights.AddAt(weight,parm); } } //______________________________________________________________________________ ROOT::Fit::Fitter* TFractionFitter::GetFitter() const { // Give direct access to the underlying fitter class. This can be // used e.g. to modify parameter values or step sizes. return fFractionFitter; } //______________________________________________________________________________ void TFractionFitter::CheckParNo(Int_t parm) const { // Function for internal use, checking parameter validity // An invalid parameter results in an error. if (parm < 0 || parm > fNpar) { Error("CheckParNo","Invalid parameter number %d",parm); } } //______________________________________________________________________________ void TFractionFitter::SetRangeX(Int_t low, Int_t high) { // Set the X range of the histogram to be used in the fit. // Use ReleaseRangeX() to go back to fitting the full histogram. // The consistency check ensures that no empty fit range occurs (and also // recomputes the bin content integrals). // Arguments: // low: lower X bin number // high: upper X bin number fLowLimitX = (low > 0 ) ? low : 1; fHighLimitX = ( high > 0 && high <= fData->GetNbinsX()) ? high : fData->GetNbinsX(); CheckConsistency(); } //______________________________________________________________________________ void TFractionFitter::ReleaseRangeX() { // Release restrictions on the X range of the histogram to be used in the fit. fLowLimitX = 1; fHighLimitX = fData->GetNbinsX(); CheckConsistency(); } //______________________________________________________________________________ void TFractionFitter::SetRangeY(Int_t low, Int_t high) { // Set the Y range of the histogram to be used in the fit (2D or 3D histograms only). // Use ReleaseRangeY() to go back to fitting the full histogram. // The consistency check ensures that no empty fit range occurs (and also // recomputes the bin content integrals). // Arguments: // low: lower Y bin number // high: upper Y bin number if (fData->GetDimension() < 2) { Error("SetRangeY","Y range cannot be set for 1D histogram"); return; } fLowLimitY = (low > 0) ? low : 1; fHighLimitY = (high > 0 && high <= fData->GetNbinsY()) ? high : fData->GetNbinsY(); CheckConsistency(); } //______________________________________________________________________________ void TFractionFitter::ReleaseRangeY() { // Release restrictions on the Y range of the histogram to be used in the fit. fLowLimitY = 1; fHighLimitY = fData->GetNbinsY(); CheckConsistency(); } //______________________________________________________________________________ void TFractionFitter::SetRangeZ(Int_t low, Int_t high) { // Set the Z range of the histogram to be used in the fit (3D histograms only). // Use ReleaseRangeY() to go back to fitting the full histogram. // The consistency check ensures that no empty fit range occurs (and also // recomputes the bin content integrals). // Arguments: // low: lower Y bin number // high: upper Y bin number if (fData->GetDimension() < 3) { Error("SetRangeZ","Z range cannot be set for 1D or 2D histogram"); return; } fLowLimitZ = (low > 0) ? low : 1; fHighLimitZ = (high > 0 && high <= fData->GetNbinsZ()) ? high : fData->GetNbinsZ(); CheckConsistency(); } //______________________________________________________________________________ void TFractionFitter::ReleaseRangeZ() { // Release restrictions on the Z range of the histogram to be used in the fit. fLowLimitZ = 1; fHighLimitZ = fData->GetNbinsZ(); CheckConsistency(); } //______________________________________________________________________________ void TFractionFitter::ExcludeBin(Int_t bin) { // Exclude the given bin from the fit. The bin numbering to be used is that // of TH1::GetBin(). int excluded = fExcludedBins.size(); for (int b = 0; b < excluded; ++b) { if (fExcludedBins[b] == bin) { Error("ExcludeBin", "bin %d already excluded", bin); return; } } fExcludedBins.push_back(bin); // This call serves to properly (re)determine the number of degrees of freeom CheckConsistency(); } //______________________________________________________________________________ void TFractionFitter::IncludeBin(Int_t bin) { // Include the given bin in the fit, if it was excluded before using ExcludeBin(). // The bin numbering to be used is that of TH1::GetBin(). for (std::vector<Int_t>::iterator it = fExcludedBins.begin(); it != fExcludedBins.end(); ++it) { if (*it == bin) { fExcludedBins.erase(it); // This call serves to properly (re)determine the number of degrees of freeom CheckConsistency(); return; } } Error("IncludeBin", "bin %d was not excluded", bin); } //______________________________________________________________________________ bool TFractionFitter::IsExcluded(Int_t bin) const { // Function for internal use, checking whether the given bin is // excluded from the fit or not. for (unsigned int b = 0; b < fExcludedBins.size(); ++b) if (fExcludedBins[b] == bin) return true; return false; } //______________________________________________________________________________ void TFractionFitter::Constrain(Int_t parm, Double_t low, Double_t high) { // Constrain the values of parameter number <parm> (the parameter numbering // follows that of the input template vector). // Use UnConstrain() to remove this constraint. CheckParNo(parm); assert( parm >= 0 && parm < (int) fFractionFitter->Config().ParamsSettings().size() ); fFractionFitter->Config().ParSettings(parm).SetLimits(low,high); } //______________________________________________________________________________ void TFractionFitter::UnConstrain(Int_t parm) { // Remove the constraints on the possible values of parameter <parm>. CheckParNo(parm); fFractionFitter->Config().ParSettings(parm).RemoveLimits(); } //______________________________________________________________________________ void TFractionFitter::CheckConsistency() { // Function used internally to check the consistency between the // various histograms. Checks are performed on nonexistent or empty // histograms, the precise histogram class, and the number of bins. // In addition, integrals over the "allowed" bin ranges are computed. // Any inconsistency results in a error. if (! fData) { Error("CheckConsistency","Nonexistent data histogram"); return; } Int_t minX, maxX, minY, maxY, minZ, maxZ; Int_t x,y,z,par; GetRanges(minX, maxX, minY, maxY, minZ, maxZ); fIntegralData = 0; fNpfits = 0; for (z = minZ; z <= maxZ; ++z) { for (y = minY; y <= maxY; ++y) { for (x = minX; x <= maxX; ++x) { if (IsExcluded(fData->GetBin(x, y, z))) continue; fNpfits++; fIntegralData += fData->GetBinContent(x, y, z); } } } if (fIntegralData <= 0) { Error("CheckConsistency","Empty data histogram"); return; } TClass* cl = fData->Class(); fNDF = fNpfits - fNpar; if (fNpar < 2) { Error("CheckConsistency","Need at least two MC histograms"); return; } for (par = 0; par < fNpar; ++par) { TH1 *h = (TH1*)fMCs.At(par); if (! h) { Error("CheckConsistency","Nonexistent MC histogram for source #%d",par); return; } if ((! h->Class()->InheritsFrom(cl)) || h->GetNbinsX() != fData->GetNbinsX() || (fData->GetDimension() > 1 && h->GetNbinsY() != fData->GetNbinsY()) || (fData->GetDimension() > 2 && h->GetNbinsZ() != fData->GetNbinsZ())) { Error("CheckConsistency","Histogram inconsistency for source #%d",par); return; } fIntegralMCs[par] = 0; for (z = minZ; z <= maxZ; ++z) { for (y = minY; y <= maxY; ++y) { for (x = minX; x <= maxX; ++x) { Int_t bin = fData->GetBin(x, y, z); if (IsExcluded(bin)) continue; Double_t MCEvents = h->GetBinContent(bin); if (MCEvents < 0) { Error("CheckConsistency", "Number of MC events (bin = %d, par = %d) cannot be negative: " " their distribution is binomial (see paper)", bin, par); } fIntegralMCs[par] += MCEvents; } } } if (fIntegralMCs[par] <= 0) { Error("CheckConsistency","Empty MC histogram #%d",par); } } } //______________________________________________________________________________ TFitResultPtr TFractionFitter::Fit() { // Perform the fit with the default UP value. // The value returned is the minimisation status. // remove any existing output histogram if (fPlot) { delete fPlot; fPlot = 0; } // Make sure the correct likelihood computation is used ROOT::Math::Functor fcnFunction(this, &TFractionFitter::EvaluateFCN, fNpar); fFractionFitter->SetFCN(static_cast<ROOT::Math::IMultiGenFunction&>(fcnFunction)); // fit Bool_t status = fFractionFitter->FitFCN(); if (!status) Warning("Fit","Abnormal termination of minimization."); fFitDone = kTRUE; // determine goodness of fit ComputeChisquareLambda(); // create a new result class TFitResult* fr = new TFitResult(fFractionFitter->Result()); TString name = TString::Format("TFractionFitter_result_of_%s",fData->GetName() ); fr->SetName(name); fr->SetTitle(name); return TFitResultPtr(fr); } //______________________________________________________________________________ void TFractionFitter::ErrorAnalysis(Double_t UP) { // Set UP to the given value (see class TMinuit), and perform a MINOS minimisation. if (! fFitDone) { Error("ErrorAnalysis","Fit not yet performed"); return; } Double_t up = UP > 0 ? UP : 0.5; fFractionFitter->Config().MinimizerOptions().SetErrorDef(up); Bool_t status = fFractionFitter->CalculateMinosErrors(); if (!status) { Error("ErrorAnalysis","Error return from MINOS: %d",fFractionFitter->Result().Status()); } } //______________________________________________________________________________ void TFractionFitter::GetResult(Int_t parm, Double_t& value, Double_t& error) const { // Obtain the fit result for parameter <parm> (the parameter numbering // follows that of the input template vector). CheckParNo(parm); if (! fFitDone) { Error("GetResult","Fit not yet performed"); return; } value = fFractionFitter->Result().Parameter(parm); error = fFractionFitter->Result().Error(parm); } //______________________________________________________________________________ TH1* TFractionFitter::GetPlot() { // Return the "template prediction" corresponding to the fit result (this is not // the same as the weighted sum of template distributions, as template statistical // uncertainties are taken into account). // Note that the name of this histogram will simply be the same as that of the // "data" histogram, prefixed with the string "Fraction fit to hist: ". // Note also that the histogram is managed by the TFractionFitter class, so the returned pointer will be invalid if // the class is deleted if (! fFitDone) { Error("GetPlot","Fit not yet performed"); return 0; } if (! fPlot) { Double_t f = 0; const Double_t * par = fFractionFitter->Result().GetParams(); assert(par); ComputeFCN(f, par, 3); } return fPlot; } //______________________________________________________________________________ void TFractionFitter::GetRanges(Int_t& minX, Int_t& maxX, Int_t& minY, Int_t& maxY, Int_t& minZ, Int_t& maxZ) const { // Used internally to obtain the bin ranges according to the dimensionality of // the histogram and the limits set by hand. if (fData->GetDimension() < 2) { minY = maxY = minZ = maxZ = 0; minX = fLowLimitX; maxX = fHighLimitX; } else if (fData->GetDimension() < 3) { minZ = maxZ = 0; minX = fLowLimitX; maxX = fHighLimitX; minY = fLowLimitY; maxY = fHighLimitY; } else { minX = fLowLimitX; maxX = fHighLimitX; minY = fLowLimitY; maxY = fHighLimitY; minZ = fLowLimitZ; maxZ = fHighLimitZ; } } //______________________________________________________________________________ void TFractionFitter::ComputeFCN(Double_t& f, const Double_t* xx, Int_t flag) { // Used internally to compute the likelihood value. // normalise the fit parameters Int_t bin, mc; Int_t minX, maxX, minY, maxY, minZ, maxZ; Int_t x,y,z; GetRanges(minX, maxX, minY, maxY, minZ, maxZ); for (mc = 0; mc < fNpar; ++mc) { Double_t tot; TH1 *h = (TH1*)fMCs[mc]; TH1 *hw = (TH1*)fWeights[mc]; if (hw) { tot = 0; for (z = minZ; z <= maxZ; ++z) { for (y = minY; y <= maxY; ++y) { for (x = minX; x <= maxX; ++x) { if (IsExcluded(fData->GetBin(x, y, z))) continue; Double_t weight = hw->GetBinContent(x, y, z); if (weight <= 0) { Error("ComputeFCN","Invalid weight encountered for MC source %d",mc); return; } tot += weight * h->GetBinContent(x, y, z); } } } } else tot = fIntegralMCs[mc]; fFractions[mc] = xx[mc] * fIntegralData / tot; } if (flag == 3) { TString ts = "Fraction fit to hist: "; ts += fData->GetName(); fPlot = (TH1*) fData->Clone(ts.Data()); fPlot->Reset(); } // likelihood computation Double_t result = 0; for (z = minZ; z <= maxZ; ++z) { for (y = minY; y <= maxY; ++y) { for (x = minX; x <= maxX; ++x) { bin = fData->GetBin(x, y, z); if (IsExcluded(bin)) continue; // Solve for the "predictions" int k0 = 0; Double_t ti = 0.0; Double_t aki = 0.0; FindPrediction(bin, ti, k0, aki); Double_t prediction = 0; for (mc = 0; mc < fNpar; ++mc) { TH1 *h = (TH1*)fMCs[mc]; TH1 *hw = (TH1*)fWeights[mc]; Double_t binPrediction; Double_t binContent = h->GetBinContent(bin); Double_t weight = hw ? hw->GetBinContent(bin) : 1; if (k0 >= 0 && fFractions[mc] == fFractions[k0]) { binPrediction = aki; } else { binPrediction = binContent > 0 ? binContent / (1+weight*fFractions[mc]*ti) : 0; } prediction += fFractions[mc]*weight*binPrediction; result -= binPrediction; if (binContent > 0 && binPrediction > 0) result += binContent*TMath::Log(binPrediction); if (flag == 3) { ((TH1*)fAji.At(mc))->SetBinContent(bin, binPrediction); } } if (flag == 3) { fPlot->SetBinContent(bin, prediction); } result -= prediction; Double_t found = fData->GetBinContent(bin); if (found > 0 && prediction > 0) result += found*TMath::Log(prediction); } } } f = -result; } //______________________________________________________________________________ void TFractionFitter::FindPrediction(int bin, Double_t &t_i, int& k_0, Double_t &A_ki) const { // Function used internally to obtain the template prediction in the individual bins // 'bin' <=> 'i' (paper) // 'par' <=> 'j' (paper) std::vector<Double_t> wgtFrac(fNpar); // weighted fractions (strengths of the sources) std::vector<Double_t> a_ji(fNpar); // number of observed MC events for bin 'i' and par (source) 'j' Double_t d_i = fData->GetBinContent(bin); // number of events in the real data for bin 'i' // Cache the weighted fractions and the number of observed MC events // Sanity check: none of the fractions should be == 0 for (Int_t par = 0; par < fNpar; ++par) { a_ji[par] = ((TH1*)fMCs.At(par))->GetBinContent(bin); TH1* hw = (TH1*)fWeights.At(par); wgtFrac[par] = hw ? hw->GetBinContent(bin) * fFractions[par] : fFractions[par]; if (wgtFrac[par] == 0) { Error("FindPrediction", "Fraction[%d] = 0!", par); return; } } // Case data = 0 if (TMath::Nint(d_i) == 0) { t_i = 1; k_0 = -1; A_ki = 0; return; } // Case one or more of the MC bin contents == 0 -> find largest fraction // k_0 stores the source index of the largest fraction k_0 = 0; Double_t maxWgtFrac = wgtFrac[0]; for (Int_t par = 1; par < fNpar; ++par) { if (wgtFrac[par] > maxWgtFrac) { k_0 = par; maxWgtFrac = wgtFrac[par]; } } Double_t t_min = -1 / maxWgtFrac; // t_i cannot be smaller than this value (see paper, par 5) // Determine if there are more sources which have the same maximum contribution (fraction) Int_t nMax = 1; Double_t contentsMax = a_ji[k_0]; for (Int_t par = 0; par < fNpar; ++par) { if (par == k_0) continue; if (wgtFrac[par] == maxWgtFrac) { nMax++; contentsMax += a_ji[par]; } } // special action if there is a zero in the number of entries for the MC source with // the largest strength (fraction) -> See Paper, Paragraph 5 if (contentsMax == 0) { A_ki = d_i / (1.0 + maxWgtFrac); for (Int_t par = 0; par < fNpar; ++par) { if (par == k_0 || wgtFrac[par] == maxWgtFrac) continue; A_ki -= a_ji[par] * wgtFrac[par] / (maxWgtFrac - wgtFrac[par]); } if (A_ki > 0) { A_ki /= nMax; t_i = t_min; return; } } k_0 = -1; // Case of nonzero histogram contents: solve for t_i using Newton's method // The equation that needs to be solved: // func(t_i) = \sum\limits_j{\frac{ p_j a_{ji} }{1 + p_j t_i}} - \frac{d_i}{1 - t_i} = 0 t_i = 0; Double_t step = 0.2; Int_t maxIter = 100000; // maximum number of iterations for(Int_t i = 0; i < maxIter; ++i) { if (t_i >= 1 || t_i < t_min) { step /= 10; t_i = 0; } Double_t func = - d_i / (1.0 - t_i); Double_t deriv = func / (1.0 - t_i); for (Int_t par = 0; par < fNpar; ++par) { Double_t r = 1.0 / (t_i + 1.0 / wgtFrac[par]); func += a_ji[par] * r; deriv -= a_ji[par] * r * r; } if (TMath::Abs(func) < 1e-12) return; // solution found Double_t delta = - func / deriv; // update delta if (TMath::Abs(delta) > step) delta = (delta > 0) ? step : -step; // correct delta if it becomes too large t_i += delta; if (TMath::Abs(delta) < 1e-13) return; // solution found } // the loop breaks when the solution is found, or when the maximum number of iterations is exhausted Warning("FindPrediction", "Did not find solution for t_i in %d iterations", maxIter); return; } #ifdef OLD //______________________________________________________________________________ void TFractionFitFCN(Int_t& npar, Double_t* gin, Double_t& f, Double_t* par, Int_t flag) { // Function called by the minimisation package. The actual functionality is passed // on to the TFractionFitter::ComputeFCN member function. TFractionFitter* fitter = dynamic_cast<TFractionFitter*>(fFractionFitter->GetObjectFit()); if (!fitter) { Error("TFractionFitFCN","Invalid fit object encountered!"); return; } fitter->ComputeFCN(npar, gin, f, par, flag); } #endif //______________________________________________________________________________ Double_t TFractionFitter::GetChisquare() const { // Return the likelihood ratio Chi-squared (chi2) for the fit. // The value is computed when the fit is executed successfully. // Chi2 calculation is based on the "likelihood ratio" lambda, // lambda = L(y;n) / L(m;n), // where L(y;n) is the likelihood of the fit result <y> describing the data <n> // and L(m;n) is the likelihood of an unknown "true" underlying distribution // <m> describing the data <n>. Since <m> is unknown, the data distribution is // used instead, // lambda = L(y;n) / L(n;n). // Note that this ratio is 1 if the fit is perfect. The chi2 value is then // computed according to // chi2 = -2*ln(lambda). // This parameter can be shown to follow a Chi-square distribution. See for // example S. Baker and R. Cousins, "Clarification of the use of chi-square // and likelihood functions in fits to histograms", Nucl. Instr. Meth. A221, // pp. 437-442 (1984) return fChisquare; } //______________________________________________________________________________ Int_t TFractionFitter::GetNDF() const { // return the number of degrees of freedom in the fit // the fNDF parameter has been previously computed during a fit. // The number of degrees of freedom corresponds to the number of points // used in the fit minus the number of templates. if (fNDF == 0) return fNpfits-fNpar; return fNDF; } //______________________________________________________________________________ Double_t TFractionFitter::GetProb() const { // return the fit probability Int_t ndf = fNpfits - fNpar; if (ndf <= 0) return 0; return TMath::Prob(fChisquare,ndf); } //______________________________________________________________________________ void TFractionFitter::ComputeChisquareLambda() { // Method used internally to compute the likelihood ratio chi2 // See the function GetChisquare() for details if ( !fFitDone ) { Error("ComputeChisquareLambda","Fit not yet (successfully) performed"); fChisquare = 0; return; } // fPlot must be initialized and filled. Leave this to the GetPlot() method. if (! fPlot) GetPlot(); Int_t minX, maxX, minY, maxY, minZ, maxZ; GetRanges(minX, maxX, minY, maxY, minZ, maxZ); Double_t logLyn = 0; // likelihood of prediction Double_t logLmn = 0; // likelihood of data ("true" distribution) for(Int_t x = minX; x <= maxX; x++) { for(Int_t y = minY; y <= maxY; y++) { for(Int_t z = minZ; z <= maxZ; z++) { if (IsExcluded(fData->GetBin(x, y, z))) continue; Double_t di = fData->GetBinContent(x, y, z); Double_t fi = fPlot->GetBinContent(x, y, z); if(fi != 0) logLyn += di * TMath::Log(fi) - fi; if(di != 0) logLmn += di * TMath::Log(di) - di; for(Int_t j = 0; j < fNpar; j++) { Double_t aji = ((TH1*)fMCs.At(j))->GetBinContent(x, y, z); Double_t bji = ((TH1*)fAji.At(j))->GetBinContent(x, y, z); if(bji != 0) logLyn += aji * TMath::Log(bji) - bji; if(aji != 0) logLmn += aji * TMath::Log(aji) - aji; } } } } fChisquare = -2*logLyn + 2*logLmn; return; } //______________________________________________________________________________ TH1* TFractionFitter::GetMCPrediction(Int_t parm) const { // Return the adjusted MC template (Aji) for template (parm). // Note that the (Aji) times fractions only sum to the total prediction // of the fit if all weights are 1. // Note also that the histogram is managed by the TFractionFitter class, so the returned pointer will be invalid if // the class is deleted CheckParNo(parm); if ( !fFitDone ) { Error("GetMCPrediction","Fit not yet performed"); return 0; } return (TH1*) fAji.At(parm); }