#include <functional>
#include <algorithm>
#include <numeric>
#include <limits>
#include "Math/Error.h"
#include "TMath.h"
#include "Math/Functor.h"
#include "Math/Integrator.h"
#include "Math/QuantFuncMathCore.h"
#include "Math/RichardsonDerivator.h"
#include "TGraphErrors.h"
#include "TF1.h"
#include "TCanvas.h"
#include "TKDE.h"
ClassImp(TKDE)
class TKDE::TKernel {
TKDE* fKDE;
UInt_t fNWeights;
std::vector<Double_t> fWeights;
public:
TKernel(Double_t weight, TKDE* kde);
void ComputeAdaptiveWeights();
Double_t operator()(Double_t x) const;
Double_t GetWeight(Double_t x) const;
Double_t GetFixedWeight() const;
const std::vector<Double_t> & GetAdaptiveWeights() const;
};
struct TKDE::KernelIntegrand {
enum EIntegralResult{kNorm, kMu, kSigma2, kUnitIntegration};
KernelIntegrand(const TKDE* kde, EIntegralResult intRes);
Double_t operator()(Double_t x) const;
private:
const TKDE* fKDE;
EIntegralResult fIntegralResult;
};
TKDE::TKDE(UInt_t events, const Double_t* data, Double_t xMin, Double_t xMax, const Option_t* option, Double_t rho) :
fData(events, 0.0),
fEvents(events, 0.0),
fPDF(0),
fUpperPDF(0),
fLowerPDF(0),
fApproximateBias(0),
fGraph(0),
fNewData(false),
fUseMinMaxFromData((xMin >= xMax)),
fNBins(events < 10000 ? 100: events / 10),
fNEvents(events),
fUseBinsNEvents(10000),
fMean(0.0),
fSigma(0.0),
fXMin(xMin),
fXMax(xMax),
fAdaptiveBandwidthFactor(1.0),
fCanonicalBandwidths(std::vector<Double_t>(kTotalKernels, 0.0)),
fKernelSigmas2(std::vector<Double_t>(kTotalKernels, -1.0)),
fSettedOptions(std::vector<Bool_t>(4, kFALSE))
{
SetOptions(option, rho);
CheckOptions();
SetMirror();
SetUseBins();
SetKernelFunction();
SetData(data);
SetCanonicalBandwidths();
SetKernelSigmas2();
SetKernel();
}
TKDE::~TKDE() {
if (fPDF) delete fPDF;
if (fUpperPDF) delete fUpperPDF;
if (fLowerPDF) delete fLowerPDF;
if (fGraph) delete fGraph;
if (fApproximateBias) delete fApproximateBias;
delete fKernelFunction;
delete fKernel;
}
void TKDE::Instantiate(KernelFunction_Ptr kernfunc, UInt_t events, const Double_t* data, Double_t xMin, Double_t xMax, const Option_t* option, Double_t rho) {
fData = std::vector<Double_t>(events, 0.0);
fEvents = std::vector<Double_t>(events, 0.0);
fPDF = 0;
fUpperPDF = 0;
fLowerPDF = 0;
fApproximateBias = 0;
fNBins = events < 10000 ? 100 : events / 10;
fNEvents = events;
fUseBinsNEvents = 10000;
fMean = 0.0;
fSigma = 0.0;
fXMin = xMin;
fXMax = xMax;
fUseMinMaxFromData = (fXMin >= fXMax);
fAdaptiveBandwidthFactor = 1.;
fCanonicalBandwidths = std::vector<Double_t>(kTotalKernels, 0.0);
fKernelSigmas2 = std::vector<Double_t>(kTotalKernels, -1.0);
fSettedOptions = std::vector<Bool_t>(4, kFALSE);
SetOptions(option, rho);
CheckOptions(kTRUE);
SetMirror();
SetUseBins();
SetKernelFunction(kernfunc);
SetData(data);
SetCanonicalBandwidths();
SetKernelSigmas2();
SetKernel();
}
void TKDE::SetOptions(const Option_t* option, Double_t rho) {
TString opt = option;
opt.ToLower();
std::string options = opt.Data();
size_t numOpt = 4;
std::vector<std::string> voption(numOpt, "");
for (std::vector<std::string>::iterator it = voption.begin(); it != voption.end() && !options.empty(); ++it) {
size_t pos = options.find_last_of(';');
if (pos == std::string::npos) {
*it = options;
break;
}
*it = options.substr(pos + 1);
options = options.substr(0, pos);
}
for (std::vector<std::string>::iterator it = voption.begin(); it != voption.end(); ++it) {
size_t pos = (*it).find(':');
if (pos != std::string::npos) {
GetOptions((*it).substr(0, pos) , (*it).substr(pos + 1));
}
}
AssureOptions();
fRho = rho;
}
void TKDE::SetDrawOptions(const Option_t* option, TString& plotOpt, TString& drawOpt) {
size_t numOpt = 2;
std::string options = TString(option).Data();
std::vector<std::string> voption(numOpt, "");
for (std::vector<std::string>::iterator it = voption.begin(); it != voption.end() && !options.empty(); ++it) {
size_t pos = options.find_last_of(';');
if (pos == std::string::npos) {
*it = options;
break;
}
*it = options.substr(pos + 1);
options = options.substr(0, pos);
}
Bool_t foundPlotOPt = kFALSE;
Bool_t foundDrawOPt = kFALSE;
for (std::vector<std::string>::iterator it = voption.begin(); it != voption.end() && !options.empty(); ++it) {
size_t pos = (*it).find(':');
if (pos == std::string::npos) break;
TString optionType = (*it).substr(0, pos);
TString optionInstance = (*it).substr(pos + 1);
optionType.ToLower();
optionInstance.ToLower();
if (optionType.Contains("plot")) {
foundPlotOPt = kTRUE;
if (optionInstance.Contains("estimate") || optionInstance.Contains("errors") || optionInstance.Contains("confidenceinterval"))
plotOpt = optionInstance;
else
this->Warning("SetDrawOptions", "Unknown plotting option: setting to KDE estimate plot.");
} else if (optionType.Contains("drawoptions")) {
foundDrawOPt = kTRUE;
drawOpt = optionInstance;
}
}
if (!foundPlotOPt) {
this->Warning("SetDrawOptions", "No plotting option: setting to KDE estimate plot.");
plotOpt = "estimate";
}
if (!foundDrawOPt) {
this->Warning("SetDrawOptions", "No drawing options: setting to default ones.");
drawOpt = "apl4";
}
}
void TKDE::GetOptions(std::string optionType, std::string option) {
if (optionType.compare("kerneltype") == 0) {
fSettedOptions[0] = kTRUE;
if (option.compare("gaussian") == 0) {
fKernelType = kGaussian;
} else if (option.compare("epanechnikov") == 0) {
fKernelType = kEpanechnikov;
} else if (option.compare("biweight") == 0) {
fKernelType = kBiweight;
} else if (option.compare("cosinearch") == 0) {
fKernelType = kCosineArch;
} else if (option.compare("userdefined") == 0) {
fKernelType = kUserDefined;
} else {
this->Warning("GetOptions", "Unknown kernel type option: setting to Gaussian");
fKernelType = kGaussian;
}
} else if (optionType.compare("iteration") == 0) {
fSettedOptions[1] = kTRUE;
if (option.compare("adaptive") == 0) {
fIteration = kAdaptive;
} else if (option.compare("fixed") == 0) {
fIteration = kFixed;
} else {
this->Warning("GetOptions", "Unknown iteration option: setting to Adaptive");
fIteration = kAdaptive;
}
} else if (optionType.compare("mirror") == 0) {
fSettedOptions[2] = kTRUE;
if (option.compare("nomirror") == 0) {
fMirror = kNoMirror;
} else if (option.compare("mirrorleft") == 0) {
fMirror = kMirrorLeft;
} else if (option.compare("mirrorright") == 0) {
fMirror = kMirrorRight;
} else if (option.compare("mirrorboth") == 0) {
fMirror = kMirrorBoth;
} else if (option.compare("mirrorasymleft") == 0) {
fMirror = kMirrorAsymLeft;
} else if (option.compare("mirrorasymleftright") == 0) {
fMirror = kMirrorAsymLeftRight;
} else if (option.compare("mirrorasymright") == 0) {
fMirror = kMirrorAsymRight;
} else if (option.compare("mirrorleftasymright") == 0) {
fMirror = kMirrorLeftAsymRight;
} else if (option.compare("mirrorasymboth") == 0) {
fMirror = kMirrorAsymBoth;
} else {
this->Warning("GetOptions", "Unknown mirror option: setting to NoMirror");
fMirror = kNoMirror;
}
} else if (optionType.compare("binning") == 0) {
fSettedOptions[3] = kTRUE;
if (option.compare("unbinned") == 0) {
fBinning = kUnbinned;
} else if (option.compare("relaxedbinning") == 0) {
fBinning = kRelaxedBinning;
} else if (option.compare("forcedbinning") == 0) {
fBinning = kForcedBinning;
} else {
this->Warning("GetOptions", "Unknown binning option: setting to RelaxedBinning");
fBinning = kRelaxedBinning;
}
}
}
void TKDE::AssureOptions() {
if (!fSettedOptions[0]) {
fKernelType = kGaussian;
}
if (!fSettedOptions[1]) {
fIteration = kAdaptive;
}
if (!fSettedOptions[2]) {
fMirror = kNoMirror;
}
if (!fSettedOptions[3]) {
fBinning = kRelaxedBinning;
}
}
void TKDE::CheckOptions(Bool_t isUserDefinedKernel) {
if (!(isUserDefinedKernel) && !(fKernelType >= kGaussian && fKernelType < kUserDefined)) {
Error("CheckOptions", "Illegal user kernel type input! Use template constructor for user defined kernel.");
}
if (fIteration != kAdaptive && fIteration != kFixed) {
Warning("CheckOptions", "Illegal user iteration type input - use default value !");
fIteration = kAdaptive;
}
if (!(fMirror >= kNoMirror && fMirror <= kMirrorAsymBoth)) {
Warning("CheckOptions", "Illegal user mirroring type input - use default value !");
fMirror = kNoMirror;
}
if (!(fBinning >= kUnbinned && fBinning <= kForcedBinning)) {
Warning("CheckOptions", "Illegal user binning type input - use default value !");
fBinning = kRelaxedBinning;
}
if (fRho <= 0.0) {
Warning("CheckOptions", "Tuning factor rho cannot be non-positive - use default value !");
fRho = 1.0;
}
}
void TKDE::SetKernelType(EKernelType kern) {
fKernelType = kern;
CheckOptions();
SetKernel();
}
void TKDE::SetIteration(EIteration iter) {
fIteration = iter;
CheckOptions();
SetKernel();
}
void TKDE::SetMirror(EMirror mir) {
fMirror = mir;
CheckOptions();
SetMirror();
if (fUseMirroring) {
SetMirroredEvents();
}
SetKernel();
}
void TKDE::SetBinning(EBinning bin) {
fBinning = bin;
CheckOptions();
SetUseBins();
SetKernel();
}
void TKDE::SetNBins(UInt_t nbins) {
if (!nbins) {
Error("SetNBins", "Number of bins must be greater than zero.");
return;
}
fNBins = nbins;
fWeightSize = fNBins / (fXMax - fXMin);
SetBinCentreData(fXMin, fXMax);
SetBinCountData();
if (fBinning == kUnbinned) {
Warning("SetNBins", "Bin type using SetBinning must set for using a binned evaluation");
return;
}
SetKernel();
}
void TKDE::SetUseBinsNEvents(UInt_t nEvents) {
fUseBinsNEvents = nEvents;
SetUseBins();
SetKernel();
}
void TKDE::SetTuneFactor(Double_t rho) {
fRho = rho;
CheckOptions();
SetKernel();
}
void TKDE::SetRange(Double_t xMin, Double_t xMax) {
if (xMin >= xMax) {
Error("SetRange", "Minimum range cannot be bigger or equal than the maximum range! Present range values remain the same.");
return;
}
fXMin = xMin;
fXMax = xMax;
fUseMinMaxFromData = false;
SetKernel();
}
void TKDE::SetUseBins() {
switch (fBinning) {
default:
case kRelaxedBinning:
if (fNEvents >= fUseBinsNEvents) {
fUseBins = kTRUE;
} else {
fUseBins = kFALSE;
}
break;
case kForcedBinning:
fUseBins = kTRUE;
break;
case kUnbinned:
fUseBins = kFALSE;
}
}
void TKDE::SetMirror() {
fMirrorLeft = fMirror == kMirrorLeft || fMirror == kMirrorBoth || fMirror == kMirrorLeftAsymRight;
fMirrorRight = fMirror == kMirrorRight || fMirror == kMirrorBoth || fMirror == kMirrorAsymLeftRight;
fAsymLeft = fMirror == kMirrorAsymLeft || fMirror == kMirrorAsymLeftRight || fMirror == kMirrorAsymBoth;
fAsymRight = fMirror == kMirrorAsymRight || fMirror == kMirrorLeftAsymRight || fMirror == kMirrorAsymBoth;
fUseMirroring = fMirrorLeft || fMirrorRight ;
}
void TKDE::SetData(const Double_t* data) {
if (!data) {
if (fNEvents) fData.reserve(fNEvents);
return;
}
fEvents.assign(data, data + fNEvents);
if (fUseMinMaxFromData) {
fXMin = *std::min_element(fEvents.begin(), fEvents.end());
fXMax = *std::max_element(fEvents.begin(), fEvents.end());
}
Double_t midspread = ComputeMidspread();
SetMean();
SetSigma(midspread);
if (fUseBins) {
if (fNBins >= fNEvents) {
this->Warning("SetData", "Default number of bins is greater or equal to number of events. Use SetNBins(UInt_t) to set the appropriate number of bins");
}
fWeightSize = fNBins / (fXMax - fXMin);
SetBinCentreData(fXMin, fXMax);
SetBinCountData();
} else {
fWeightSize = fNEvents / (fXMax - fXMin);
fData = fEvents;
}
if (fUseMirroring) {
SetMirroredEvents();
}
}
void TKDE::InitFromNewData() {
fNewData = false;
fEvents = fData;
if (fUseMinMaxFromData) {
fXMin = *std::min_element(fEvents.begin(), fEvents.end());
fXMax = *std::max_element(fEvents.begin(), fEvents.end());
}
Double_t midspread = ComputeMidspread();
SetMean();
SetSigma(midspread);
fWeightSize = fNEvents / (fXMax - fXMin);
if (fUseMirroring) {
SetMirroredEvents();
}
SetKernel();
}
void TKDE::SetMirroredEvents() {
std::vector<Double_t> originalEvents = fEvents;
if (fMirrorLeft) {
fEvents.resize(2 * fNEvents, 0.0);
transform(fEvents.begin(), fEvents.begin() + fNEvents, fEvents.begin() + fNEvents, std::bind1st(std::minus<Double_t>(), 2 * fXMin));
}
if (fMirrorRight) {
fEvents.resize((fMirrorLeft + 2) * fNEvents, 0.0);
transform(fEvents.begin(), fEvents.begin() + fNEvents, fEvents.begin() + (fMirrorLeft + 1) * fNEvents, std::bind1st(std::minus<Double_t>(), 2 * fXMax));
}
if(fUseBins) {
fNBins *= (fMirrorLeft + fMirrorRight + 1);
Double_t xmin = fMirrorLeft ? 2 * fXMin - fXMax : fXMin;
Double_t xmax = fMirrorRight ? 2 * fXMax - fXMin : fXMax;
SetBinCentreData(xmin, xmax);
SetBinCountData();
} else {
fData = fEvents;
}
fEvents = originalEvents;
}
void TKDE::SetMean() {
fMean = std::accumulate(fEvents.begin(), fEvents.end(), 0.0) / fEvents.size();
}
void TKDE::SetSigma(Double_t R) {
fSigma = std::sqrt(1. / (fEvents.size() - 1.) * (std::inner_product(fEvents.begin(), fEvents.end(), fEvents.begin(), 0.0) - fEvents.size() * std::pow(fMean, 2.)));
fSigmaRob = std::min(fSigma, R / 1.349);
}
void TKDE::SetKernel() {
UInt_t n = fData.size();
if (n == 0) return;
Double_t weight(fCanonicalBandwidths[kGaussian] * fSigmaRob * std::pow(3. / (8. * std::sqrt(M_PI)) * n, -0.2));
weight *= fRho * fCanonicalBandwidths[fKernelType] / fCanonicalBandwidths[kGaussian];
fKernel = new TKernel(weight, this);
if (fIteration == kAdaptive) {
fKernel->ComputeAdaptiveWeights();
}
}
void TKDE::SetKernelFunction(KernelFunction_Ptr kernfunc) {
switch (fKernelType) {
case kGaussian :
fKernelFunction = new ROOT::Math::WrappedMemFunction<TKDE, Double_t (TKDE::*)(Double_t) const>(*this, &TKDE::GaussianKernel);
break;
case kEpanechnikov :
fKernelFunction = new ROOT::Math::WrappedMemFunction<TKDE, Double_t (TKDE::*)(Double_t) const>(*this, &TKDE::EpanechnikovKernel);
break;
case kBiweight :
fKernelFunction = new ROOT::Math::WrappedMemFunction<TKDE, Double_t (TKDE::*)(Double_t) const>(*this, &TKDE::BiweightKernel);
break;
case kCosineArch :
fKernelFunction = new ROOT::Math::WrappedMemFunction<TKDE, Double_t (TKDE::*)(Double_t) const>(*this, &TKDE::CosineArchKernel);
break;
case kUserDefined :
case kTotalKernels :
default:
fKernelFunction = kernfunc;
if (fKernelFunction) {
CheckKernelValidity();
SetCanonicalBandwidth();
SetKernelSigma2();
SetKernel();
} else {
Error("SetKernelFunction", "Undefined user kernel function input!");
}
}
}
void TKDE::SetCanonicalBandwidths() {
fCanonicalBandwidths[kGaussian] = 0.7764;
fCanonicalBandwidths[kEpanechnikov] = 1.7188;
fCanonicalBandwidths[kBiweight] = 2.03617;
fCanonicalBandwidths[kCosineArch] = 1.7663;
}
void TKDE::SetKernelSigmas2() {
fKernelSigmas2[kGaussian] = 1.0;
fKernelSigmas2[kEpanechnikov] = 1.0 / 5.0;
fKernelSigmas2[kBiweight] = 1.0 / 7.0;
fKernelSigmas2[kCosineArch] = 1.0 - 8.0 / std::pow(M_PI, 2);
}
TF1* TKDE::GetFunction(UInt_t npx, Double_t xMin, Double_t xMax) {
return GetKDEFunction(npx,xMin,xMax);
}
TF1* TKDE::GetUpperFunction(Double_t confidenceLevel, UInt_t npx, Double_t xMin, Double_t xMax) {
return GetPDFUpperConfidenceInterval(confidenceLevel,npx,xMin,xMax);
}
TF1* TKDE::GetLowerFunction(Double_t confidenceLevel, UInt_t npx, Double_t xMin, Double_t xMax) {
return GetPDFLowerConfidenceInterval(confidenceLevel,npx,xMin,xMax);
}
TF1* TKDE::GetApproximateBias(UInt_t npx, Double_t xMin, Double_t xMax) {
return GetKDEApproximateBias(npx,xMin,xMax);
}
void TKDE::Fill(Double_t data) {
if (fUseBins) {
this->Warning("Fill", "Cannot fill data with data binned option. Data input ignored.");
return;
}
fData.push_back(data);
fNEvents++;
fNewData = kTRUE;
}
Double_t TKDE::operator()(const Double_t* x, const Double_t*) const {
return (*this)(*x);
}
Double_t TKDE::operator()(Double_t x) const {
if (fNewData) (const_cast<TKDE*>(this))->InitFromNewData();
return (*fKernel)(x);
}
Double_t TKDE::GetMean() const {
if (fNewData) (const_cast<TKDE*>(this))->InitFromNewData();
return fMean;
}
Double_t TKDE::GetSigma() const {
if (fNewData) (const_cast<TKDE*>(this))->InitFromNewData();
return fSigma;
}
Double_t TKDE::GetRAMISE() const {
Double_t result = 5. / 4. * fKernelSigmas2[fKernelType] * std::pow(fCanonicalBandwidths[fKernelType], 4) * std::pow(3. / (8. * std::sqrt(M_PI)) , -0.2) * fSigmaRob * std::pow(fNEvents, -0.8);
return std::sqrt(result);
}
TKDE::TKernel::TKernel(Double_t weight, TKDE* kde) :
fKDE(kde),
fNWeights(kde->fData.size()),
fWeights(fNWeights, weight)
{}
void TKDE::TKernel::ComputeAdaptiveWeights() {
std::vector<Double_t> weights = fWeights;
std::vector<Double_t>::iterator weight = weights.begin();
Double_t minWeight = *weight * 0.05;
std::vector<Double_t>::iterator data = fKDE->fData.begin();
Double_t f = 0.0;
for (; weight != weights.end(); ++weight, ++data) {
f = (*fKDE->fKernel)(*data);
*weight = std::max(*weight /= std::sqrt(f), minWeight);
fKDE->fAdaptiveBandwidthFactor += std::log(f);
}
Double_t kAPPROX_GEO_MEAN = 0.241970724519143365;
fKDE->fAdaptiveBandwidthFactor = fKDE->fUseMirroring ? kAPPROX_GEO_MEAN / fKDE->fSigmaRob : std::sqrt(std::exp(fKDE->fAdaptiveBandwidthFactor / fKDE->fData.size()));
transform(weights.begin(), weights.end(), fWeights.begin(), std::bind2nd(std::multiplies<Double_t>(), fKDE->fAdaptiveBandwidthFactor));
}
Double_t TKDE::TKernel::GetWeight(Double_t x) const {
return fWeights[fKDE->Index(x)];
}
void TKDE::SetBinCentreData(Double_t xmin, Double_t xmax) {
fData.assign(fNBins, 0.0);
Double_t binWidth((xmax - xmin) / fNBins);
for (UInt_t i = 0; i < fNBins; ++i) {
fData[i] = xmin + (i + 0.5) * binWidth;
}
}
void TKDE::SetBinCountData() {
fBinCount.resize(fNBins);
for (UInt_t i = 0; i < fNEvents; ++i) {
if (fEvents[i] >= fXMin && fEvents[i] < fXMax)
fBinCount[Index(fEvents[i])]++;
}
}
void TKDE::Draw(const Option_t* opt) {
TString plotOpt = opt;
plotOpt.ToLower();
TString drawOpt = plotOpt;
if(gPad && !plotOpt.Contains("same")) {
gPad->Clear();
}
if (plotOpt.Contains("errors")) {
drawOpt.ReplaceAll("errors","");
DrawErrors(drawOpt);
}
else if (plotOpt.Contains("confidenceinterval") ||
plotOpt.Contains("confinterval")) {
drawOpt.ReplaceAll("confidenceinterval","");
drawOpt.ReplaceAll("confinterval","");
Double_t level = 0.95;
const char * s = strstr(plotOpt.Data(),"interval@");
if (s != 0) sscanf(s,"interval@%lf",&level);
if((level <= 0) || (level >= 1)) {
Warning("Draw","given confidence level %.3lf is invalid - use default 0.95",level);
level = 0.95;
}
DrawConfidenceInterval(drawOpt,level);
}
else {
if (fPDF) delete fPDF;
fPDF = GetKDEFunction();
fPDF->Draw(drawOpt);
}
}
void TKDE::DrawErrors(TString& drawOpt) {
if (fGraph) delete fGraph;
fGraph = GetGraphWithErrors();
fGraph->Draw(drawOpt.Data());
}
TGraphErrors* TKDE::GetGraphWithErrors(UInt_t npx, double xmin, double xmax) {
if (xmin>= xmax) { xmin = fXMin; xmax = fXMax; }
UInt_t n = npx;
Double_t* x = new Double_t[n + 1];
Double_t* ex = new Double_t[n + 1];
Double_t* y = new Double_t[n + 1];
Double_t* ey = new Double_t[n + 1];
for (UInt_t i = 0; i <= n; ++i) {
x[i] = xmin + i * (xmax - xmin) / n;
y[i] = (*this)(x[i]);
ex[i] = 0;
ey[i] = this->GetError(x[i]);
}
TGraphErrors* ge = new TGraphErrors(n, &x[0], &y[0], &ex[0], &ey[0]);
ge->SetName("kde_graph_error");
ge->SetTitle("Errors");
delete [] x;
delete [] ex;
delete [] y;
delete [] ey;
return ge;
}
void TKDE::DrawConfidenceInterval(TString& drawOpt,double cl) {
GetKDEFunction()->Draw(drawOpt.Data());
TF1* upper = GetPDFUpperConfidenceInterval(cl);
upper->SetLineColor(kBlue);
upper->Draw(("same" + drawOpt).Data());
TF1* lower = GetPDFLowerConfidenceInterval(cl);
lower->SetLineColor(kRed);
lower->Draw(("same" + drawOpt).Data());
if (fUpperPDF) delete fUpperPDF;
if (fLowerPDF) delete fLowerPDF;
fUpperPDF = upper;
fLowerPDF = lower;
}
Double_t TKDE::GetFixedWeight() const {
Double_t result = -1.;
if (fIteration == TKDE::kAdaptive) {
this->Warning("GetFixedWeight()", "Fixed iteration option not enabled. Returning %f.", result);
} else {
result = fKernel->GetFixedWeight();
}
return result;
}
const Double_t * TKDE::GetAdaptiveWeights() const {
if (fIteration != TKDE::kAdaptive) {
this->Warning("GetFixedWeight()", "Adaptive iteration option not enabled. Returning a NULL pointer<");
return 0;
}
if (fNewData) (const_cast<TKDE*>(this))->InitFromNewData();
return &(fKernel->GetAdaptiveWeights()).front();
}
Double_t TKDE::TKernel::GetFixedWeight() const {
return fWeights[0];
}
const std::vector<Double_t> & TKDE::TKernel::GetAdaptiveWeights() const {
return fWeights;
}
Double_t TKDE::TKernel::operator()(Double_t x) const {
Double_t result(0.0);
UInt_t n = fKDE->fData.size();
Bool_t useBins = (fKDE->fBinCount.size() == n);
for (UInt_t i = 0; i < n; ++i) {
Double_t binCount = (useBins) ? fKDE->fBinCount[i] : 1.0;
result += binCount / fWeights[i] * (*fKDE->fKernelFunction)((x - fKDE->fData[i]) / fWeights[i]);
if (fKDE->fAsymLeft) {
result -= binCount / fWeights[i] * (*fKDE->fKernelFunction)((x - (2. * fKDE->fXMin - fKDE->fData[i])) / fWeights[i]);
}
if (fKDE->fAsymRight) {
result -= binCount / fWeights[i] * (*fKDE->fKernelFunction)((x - (2. * fKDE->fXMax - fKDE->fData[i])) / fWeights[i]);
}
}
return result / fKDE->fNEvents;
}
UInt_t TKDE::Index(Double_t x) const {
Int_t bin = Int_t((x - fXMin) * fWeightSize);
if (bin == (Int_t)fData.size()) return --bin;
if (fUseMirroring && (fMirrorLeft || !fMirrorRight)) {
bin += fData.size() / (fMirrorLeft + fMirrorRight + 1);
}
if (bin > (Int_t)fData.size()) {
return (Int_t)(fData.size()) - 1;
} else if (bin <= 0) {
return 0;
}
return bin;
}
Double_t TKDE::UpperConfidenceInterval(const Double_t* x, const Double_t* p) const {
Double_t f = (*this)(x);
Double_t sigma = GetError(*x);
Double_t prob = 1. - (1.-*p)/2;
Double_t z = ROOT::Math::normal_quantile(prob, 1.0);
return f + z * sigma;
}
Double_t TKDE::LowerConfidenceInterval(const Double_t* x, const Double_t* p) const {
Double_t f = (*this)(x);
Double_t sigma = GetError(*x);
Double_t prob = (1.-*p)/2;
Double_t z = ROOT::Math::normal_quantile(prob, 1.0);
return f + z * sigma;
}
Double_t TKDE::GetBias(Double_t x) const {
ROOT::Math::WrappedFunction<const TKDE&> kern(*this);
ROOT::Math::RichardsonDerivator rd;
rd.SetFunction(kern);
Double_t df2 = rd.Derivative2(x);
Double_t weight = fKernel->GetWeight(x);
return 0.5 * fKernelSigmas2[fKernelType] * std::pow(weight, 2) * df2;
}
Double_t TKDE::GetError(Double_t x) const {
Double_t kernelL2Norm = ComputeKernelL2Norm();
Double_t f = (*this)(x);
Double_t weight = fKernel->GetWeight(x);
Double_t result = f * kernelL2Norm / (fNEvents * weight);
return std::sqrt(result);
}
void TKDE::CheckKernelValidity() {
Double_t valid = kTRUE;
Double_t unity = ComputeKernelIntegral();
valid = valid && unity == 1.;
if (!valid) {
Error("CheckKernelValidity", "Kernel's integral is %f",unity);
}
Double_t mu = ComputeKernelMu();
valid = valid && mu == 0.;
if (!valid) {
Error("CheckKernelValidity", "Kernel's mu is %f" ,mu);
}
Double_t sigma2 = ComputeKernelSigma2();
valid = valid && sigma2 > 0 && sigma2 != std::numeric_limits<Double_t>::infinity();
if (!valid) {
Error("CheckKernelValidity", "Kernel's sigma2 is %f",sigma2);
}
if (!valid) {
Error("CheckKernelValidity", "Validation conditions: the kernel's integral must be 1, the kernel's mu must be zero and the kernel's sigma2 must be finite positive to be a suitable kernel.");
}
}
Double_t TKDE::ComputeKernelL2Norm() const {
ROOT::Math::IntegratorOneDim ig(ROOT::Math::IntegrationOneDim::kGAUSS);
KernelIntegrand kernel(this, TKDE::KernelIntegrand::kNorm);
ig.SetFunction(kernel);
Double_t result = ig.Integral();
return result;
}
Double_t TKDE::ComputeKernelSigma2() const {
ROOT::Math::IntegratorOneDim ig( ROOT::Math::IntegrationOneDim::kGAUSS);
KernelIntegrand kernel(this, TKDE::KernelIntegrand::kSigma2);
ig.SetFunction(kernel);
Double_t result = ig.Integral();
return result;
}
Double_t TKDE::ComputeKernelMu() const {
ROOT::Math::IntegratorOneDim ig(ROOT::Math::IntegrationOneDim::kGAUSS);
KernelIntegrand kernel(this, TKDE::KernelIntegrand::kMu);
ig.SetFunction(kernel);
Double_t result = ig.Integral();
return result;
}
Double_t TKDE::ComputeKernelIntegral() const {
ROOT::Math::IntegratorOneDim ig(ROOT::Math::IntegrationOneDim::kGAUSS);
KernelIntegrand kernel(this, TKDE::KernelIntegrand::kUnitIntegration);
ig.SetFunction(kernel);
Double_t result = ig.Integral();
return result;
}
Double_t TKDE::ComputeMidspread () {
std::sort(fEvents.begin(), fEvents.end());
Double_t quantiles[2] = {0.0, 0.0};
Double_t prob[2] = {0.25, 0.75};
TMath::Quantiles(fEvents.size(), 2, &fEvents[0], quantiles, prob);
Double_t lowerquartile = quantiles[0];
Double_t upperquartile = quantiles[1];
return upperquartile - lowerquartile;
}
void TKDE::SetCanonicalBandwidth() {
fCanonicalBandwidths[kUserDefined] = std::pow(ComputeKernelL2Norm() / std::pow(ComputeKernelSigma2(), 2), 1. / 5.);
}
void TKDE::SetKernelSigma2() {
fKernelSigmas2[kUserDefined] = ComputeKernelSigma2();
}
TKDE::KernelIntegrand::KernelIntegrand(const TKDE* kde, EIntegralResult intRes) : fKDE(kde), fIntegralResult(intRes) {
}
Double_t TKDE::KernelIntegrand::operator()(Double_t x) const {
if (fIntegralResult == kNorm) {
return std::pow((*fKDE->fKernelFunction)(x), 2);
} else if (fIntegralResult == kMu) {
return x * (*fKDE->fKernelFunction)(x);
} else if (fIntegralResult == kSigma2) {
return std::pow(x, 2) * (*fKDE->fKernelFunction)(x);
} else if (fIntegralResult == kUnitIntegration) {
return (*fKDE->fKernelFunction)(x);
} else {
return -1;
}
}
TF1* TKDE::GetKDEFunction(UInt_t npx, Double_t xMin , Double_t xMax) {
TString name = "KDEFunc_"; name+= GetName();
TString title = "KDE "; title+= GetTitle();
if (xMin >= xMax) { xMin = fXMin; xMax = fXMax; }
TF1 * pdf = new TF1(name.Data(), this, xMin, xMax, 0);
if (npx > 0) pdf->SetNpx(npx);
pdf->SetTitle(title);
TF1 * f = (TF1*)pdf->Clone();
delete pdf;
return f;
}
TF1* TKDE::GetPDFUpperConfidenceInterval(Double_t confidenceLevel, UInt_t npx, Double_t xMin , Double_t xMax) {
TString name;
name.Form("KDE_UpperCL%f5.3_%s",confidenceLevel,GetName());
if (xMin >= xMax) { xMin = fXMin; xMax = fXMax; }
TF1 * upperPDF = new TF1(name, this, &TKDE::UpperConfidenceInterval, xMin, xMax, 1, "TKDE", "UpperConfidenceInterval");
upperPDF->SetParameter(0, confidenceLevel);
if (npx > 0) upperPDF->SetNpx(npx);
TF1 * f = (TF1*)upperPDF->Clone();
delete upperPDF;
return f;
}
TF1* TKDE::GetPDFLowerConfidenceInterval(Double_t confidenceLevel, UInt_t npx, Double_t xMin , Double_t xMax) {
TString name;
name.Form("KDE_LowerCL%f5.3_%s",confidenceLevel,GetName());
if (xMin >= xMax) { xMin = fXMin; xMax = fXMax; }
TF1 * lowerPDF = new TF1(name, this, &TKDE::LowerConfidenceInterval, xMin, xMax, 1);
lowerPDF->SetParameter(0, confidenceLevel);
if (npx > 0) lowerPDF->SetNpx(npx);
TF1 * f = (TF1*)lowerPDF->Clone();
delete lowerPDF;
return f;
}
TF1* TKDE::GetKDEApproximateBias(UInt_t npx, Double_t xMin , Double_t xMax) {
TString name = "KDE_Bias_"; name += GetName();
if (xMin >= xMax) { xMin = fXMin; xMax = fXMax; }
TF1 * approximateBias = new TF1(name, this, &TKDE::ApproximateBias, xMin, xMax, 0);
if (npx > 0) approximateBias->SetNpx(npx);
TF1 * f = (TF1*)approximateBias->Clone();
delete approximateBias;
return f;
}