// @(#)root/mathmore:$Id$ // Authors: B. List 29.4.2010 /********************************************************************** * * * Copyright (c) 2004 ROOT Foundation, CERN/PH-SFT * * * * This library is free software; you can redistribute it and/or * * modify it under the terms of the GNU General Public License * * as published by the Free Software Foundation; either version 2 * * of the License, or (at your option) any later version. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this library (see file COPYING); if not, write * * to the Free Software Foundation, Inc., 59 Temple Place, Suite * * 330, Boston, MA 02111-1307 USA, or contact the author. * * * **********************************************************************/ // Header file for class Vavilov // // Created by: blist at Thu Apr 29 11:19:00 2010 // // Last update: Thu Apr 29 11:19:00 2010 // #ifndef ROOT_Math_Vavilov #define ROOT_Math_Vavilov /** @ingroup StatFunc */ #include <iostream> namespace ROOT { namespace Math { //____________________________________________________________________________ /** Base class describing a Vavilov distribution The Vavilov distribution is defined in P.V. Vavilov: Ionization losses of high-energy heavy particles, Sov. Phys. JETP 5 (1957) 749 [Zh. Eksp. Teor. Fiz. 32 (1957) 920]. The probability density function of the Vavilov distribution as function of Landau's parameter is given by: \f[ p(\lambda_L; \kappa, \beta^2) = \frac{1}{2 \pi i}\int_{c-i\infty}^{c+i\infty} \phi(s) e^{\lambda_L s} ds\f] where \f$\phi(s) = e^{C} e^{\psi(s)}\f$ with \f$ C = \kappa (1+\beta^2 \gamma )\f$ and \f$\psi(s)= s \ln \kappa + (s+\beta^2 \kappa) \cdot \left ( \int \limits_{0}^{1} \frac{1 - e^{\frac{-st}{\kappa}}}{t} \,d t- \gamma \right ) - \kappa \, e^{\frac{-s}{\kappa}}\f$. \f$ \gamma = 0.5772156649\dots\f$ is Euler's constant. For the class Vavilov, Pdf returns the Vavilov distribution as function of Landau's parameter \f$\lambda_L = \lambda_V/\kappa - \ln \kappa\f$, which is the convention used in the CERNLIB routines, and in the tables by S.M. Seltzer and M.J. Berger: Energy loss stragglin of protons and mesons: Tabulation of the Vavilov distribution, pp 187-203 in: National Research Council (U.S.), Committee on Nuclear Science: Studies in penetration of charged particles in matter, Nat. Akad. Sci. Publication 1133, Nucl. Sci. Series Report No. 39, Washington (Nat. Akad. Sci.) 1964, 388 pp. Available from <A HREF="http://books.google.de/books?id=kmMrAAAAYAAJ&lpg=PP9&pg=PA187#v=onepage&q&f=false">Google books</A> Therefore, for small values of \f$\kappa < 0.01\f$, pdf approaches the Landau distribution. For values \f$\kappa > 10\f$, the Gauss approximation should be used with \f$\mu\f$ and \f$\sigma\f$ given by Vavilov::Mean(kappa, beta2) and sqrt(Vavilov::Variance(kappa, beta2). The original Vavilov pdf is obtained by v.Pdf(lambdaV/kappa-log(kappa))/kappa. Two subclasses are provided: - VavilovFast uses the algorithm by A. Rotondi and P. Montagna, Fast calculation of Vavilov distribution, <A HREF="http://dx.doi.org/10.1016/0168-583X(90)90749-K">Nucl. Instr. and Meth. B47 (1990) 215-224</A>, which has been implemented in <A HREF="http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/g115/top.html"> CERNLIB (G115)</A>. - VavilovAccurate uses the algorithm by B. Schorr, Programs for the Landau and the Vavilov distributions and the corresponding random numbers, <A HREF="http://dx.doi.org/10.1016/0010-4655(74)90091-5">Computer Phys. Comm. 7 (1974) 215-224</A>, which has been implemented in <A HREF="http://wwwasdoc.web.cern.ch/wwwasdoc/shortwrupsdir/g116/top.html"> CERNLIB (G116)</A>. Both subclasses store coefficients needed to calculate \f$p(\lambda; \kappa, \beta^2)\f$ for fixed values of \f$\kappa\f$ and \f$\beta^2\f$. Changing these values is computationally expensive. VavilovFast is about 5 times faster for the calculation of the Pdf than VavilovAccurate; initialization takes about 100 times longer than calculation of the Pdf value. For the quantile calculation, VavilovFast is 30 times faster for the initialization, and 6 times faster for subsequent calculations. Initialization for Quantile takes 27 (11) times longer than subsequent calls for VavilovFast (VavilovAccurate). @ingroup StatFunc */ class Vavilov { public: /** Default constructor */ Vavilov(); /** Destructor */ virtual ~Vavilov(); public: /** Evaluate the Vavilov probability density function @param x The Landau parameter \f$x = \lambda_L\f$ */ virtual double Pdf (double x) const = 0; /** Evaluate the Vavilov probability density function, and set kappa and beta2, if necessary @param x The Landau parameter \f$x = \lambda_L\f$ @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ */ virtual double Pdf (double x, double kappa, double beta2) = 0; /** Evaluate the Vavilov cummulative probability density function @param x The Landau parameter \f$x = \lambda_L\f$ */ virtual double Cdf (double x) const = 0; /** Evaluate the Vavilov cummulative probability density function, and set kappa and beta2, if necessary @param x The Landau parameter \f$x = \lambda_L\f$ @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ */ virtual double Cdf (double x, double kappa, double beta2) = 0; /** Evaluate the Vavilov complementary cummulative probability density function @param x The Landau parameter \f$x = \lambda_L\f$ */ virtual double Cdf_c (double x) const = 0; /** Evaluate the Vavilov complementary cummulative probability density function, and set kappa and beta2, if necessary @param x The Landau parameter \f$x = \lambda_L\f$ @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ */ virtual double Cdf_c (double x, double kappa, double beta2) = 0; /** Evaluate the inverse of the Vavilov cummulative probability density function @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$ */ virtual double Quantile (double z) const = 0; /** Evaluate the inverse of the Vavilov cummulative probability density function, and set kappa and beta2, if necessary @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$ @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ */ virtual double Quantile (double z, double kappa, double beta2) = 0; /** Evaluate the inverse of the complementary Vavilov cummulative probability density function @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$ */ virtual double Quantile_c (double z) const = 0; /** Evaluate the inverse of the complementary Vavilov cummulative probability density function, and set kappa and beta2, if necessary @param z The argument \f$z\f$, which must be in the range \f$0 \le z \le 1\f$ @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ */ virtual double Quantile_c (double z, double kappa, double beta2) = 0; /** Change \f$\kappa\f$ and \f$\beta^2\f$ and recalculate coefficients if necessary @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ */ virtual void SetKappaBeta2 (double kappa, double beta2) = 0; /** Return the minimum value of \f$\lambda\f$ for which \f$p(\lambda; \kappa, \beta^2)\f$ is nonzero in the current approximation */ virtual double GetLambdaMin() const = 0; /** Return the maximum value of \f$\lambda\f$ for which \f$p(\lambda; \kappa, \beta^2)\f$ is nonzero in the current approximation */ virtual double GetLambdaMax() const = 0; /** Return the current value of \f$\kappa\f$ */ virtual double GetKappa() const = 0; /** Return the current value of \f$\beta^2\f$ */ virtual double GetBeta2() const = 0; /** Return the value of \f$\lambda\f$ where the pdf is maximal */ virtual double Mode() const; /** Return the value of \f$\lambda\f$ where the pdf is maximal function, and set kappa and beta2, if necessary @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ */ virtual double Mode(double kappa, double beta2); /** Return the theoretical mean \f$\mu = \gamma-1- \ln \kappa - \beta^2\f$, where \f$\gamma = 0.5772\dots\f$ is Euler's constant */ virtual double Mean() const; /** Return the theoretical variance \f$\sigma^2 = \frac{1 - \beta^2/2}{\kappa}\f$ */ virtual double Variance() const; /** Return the theoretical skewness \f$\gamma_1 = \frac{1/2 - \beta^2/3}{\kappa^2 \sigma^3} \f$ */ virtual double Skewness() const; /** Return the theoretical kurtosis \f$\gamma_2 = \frac{1/3 - \beta^2/4}{\kappa^3 \sigma^4}\f$ */ virtual double Kurtosis() const; /** Return the theoretical Mean \f$\mu = \gamma-1- \ln \kappa - \beta^2\f$ @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ */ static double Mean(double kappa, double beta2); /** Return the theoretical Variance \f$\sigma^2 = \frac{1 - \beta^2/2}{\kappa}\f$ @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ */ static double Variance(double kappa, double beta2); /** Return the theoretical skewness \f$\gamma_1 = \frac{1/2 - \beta^2/3}{\kappa^2 \sigma^3} \f$ @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ */ static double Skewness(double kappa, double beta2); /** Return the theoretical kurtosis \f$\gamma_2 = \frac{1/3 - \beta^2/4}{\kappa^3 \sigma^4}\f$ @param kappa The parameter \f$\kappa\f$, which should be in the range \f$0.01 \le \kappa \le 10 \f$ @param beta2 The parameter \f$\beta^2\f$, which must be in the range \f$0 \le \beta^2 \le 1 \f$ */ static double Kurtosis(double kappa, double beta2); }; } // namespace Math } // namespace ROOT #endif /* ROOT_Math_Vavilov */