#include "TDecompBK.h"
#include "TMath.h"
#include "TError.h"
ClassImp(TDecompBK)
TDecompBK::TDecompBK()
{
fNIpiv = 0;
fIpiv = 0;
}
TDecompBK::TDecompBK(Int_t nrows)
{
fNIpiv = nrows;
fIpiv = new Int_t[fNIpiv];
memset(fIpiv,0,fNIpiv*sizeof(Int_t));
fU.ResizeTo(nrows,nrows);
}
TDecompBK::TDecompBK(Int_t row_lwb,Int_t row_upb)
{
const Int_t nrows = row_upb-row_lwb+1;
fNIpiv = nrows;
fIpiv = new Int_t[fNIpiv];
memset(fIpiv,0,fNIpiv*sizeof(Int_t));
fColLwb = fRowLwb = row_lwb;
fU.ResizeTo(nrows,nrows);
}
TDecompBK::TDecompBK(const TMatrixDSym &a,Double_t tol)
{
R__ASSERT(a.IsValid());
SetBit(kMatrixSet);
fCondition = a.Norm1();
fTol = a.GetTol();
if (tol > 0)
fTol = tol;
fNIpiv = a.GetNcols();
fIpiv = new Int_t[fNIpiv];
memset(fIpiv,0,fNIpiv*sizeof(Int_t));
const Int_t nRows = a.GetNrows();
fColLwb = fRowLwb = a.GetRowLwb();
fU.ResizeTo(nRows,nRows);
memcpy(fU.GetMatrixArray(),a.GetMatrixArray(),nRows*nRows*sizeof(Double_t));
}
TDecompBK::TDecompBK(const TDecompBK &another) : TDecompBase(another)
{
fNIpiv = 0;
fIpiv = 0;
*this = another;
}
Bool_t TDecompBK::Decompose()
{
if (TestBit(kDecomposed)) return kTRUE;
if ( !TestBit(kMatrixSet) ) {
Error("Decompose()","Matrix has not been set");
return kFALSE;
}
Bool_t ok = kTRUE;
const Double_t alpha = (1.+TMath::Sqrt(17.))/8.;
const Int_t n = fU.GetNcols();
Double_t *pU = fU.GetMatrixArray();
TMatrixDDiag diag(fU);
Int_t imax = 0;
Int_t k = n-1;
while (k >= 0) {
Int_t kstep = 1;
const Double_t absakk = TMath::Abs(diag(k));
Double_t colmax;
if ( k > 0 ) {
TVectorD vcol = TMatrixDColumn_const(fU,k);
vcol.Abs();
imax = TMath::LocMax(k,vcol.GetMatrixArray());
colmax = vcol[imax];
} else {
colmax = 0.;
}
Int_t kp;
if (TMath::Max(absakk,colmax) <= fTol) {
kp = k;
ok = kFALSE;
} else {
if (absakk >= alpha*colmax) {
kp = k;
} else {
TVectorD vrow = TMatrixDRow_const(fU,imax);
vrow.Abs();
Int_t jmax = imax+1+TMath::LocMax(k-imax,vrow.GetMatrixArray()+imax+1);
Double_t rowmax = vrow[jmax];
if (imax > 0) {
TVectorD vcol = TMatrixDColumn_const(fU,imax);
vcol.Abs();
jmax = TMath::LocMax(imax,vcol.GetMatrixArray());
rowmax = TMath::Max(rowmax,vcol[jmax]);
}
if (absakk >= alpha*colmax*(colmax/rowmax)) {
kp = k;
} else if( TMath::Abs(diag(imax)) >= alpha*rowmax) {
kp = imax;
} else {
kp = imax;
kstep = 2;
}
}
const Int_t kk = k-kstep+1;
if (kp != kk) {
Double_t *c_kk = pU+kk;
Double_t *c_kp = pU+kp;
for (Int_t irow = 0; irow < kp; irow++) {
const Double_t t = *c_kk;
*c_kk = *c_kp;
*c_kp = t;
c_kk += n;
c_kp += n;
}
c_kk = pU+(kp+1)*n+kk;
Double_t *r_kp = pU+kp*n+kp+1;
for (Int_t icol = 0; icol < kk-kp-1; icol++) {
const Double_t t = *c_kk;
*c_kk = *r_kp;
*r_kp = t;
c_kk += n;
r_kp += 1;
}
Double_t t = diag(kk);
diag(kk) = diag(kp);
diag(kp) = t;
if (kstep == 2) {
t = pU[(k-1)*n+k];
pU[(k-1)*n+k] = pU[kp*n+k];
pU[kp*n+k] = t;
}
}
if (kstep == 1 && k > 0) {
const Double_t r1 = 1./diag(k);
TMatrixDSub sub1(fU,0,k-1,0,k-1);
sub1.Rank1Update(TMatrixDColumn_const(fU,k),-r1);
TMatrixDSub sub2(fU,0,k-1,k,k);
sub2 *= r1;
} else {
if ( k > 1 ) {
Double_t *pU_k1 = pU+(k-1)*n;
Double_t d12 = pU_k1[k];
const Double_t d22 = pU_k1[k-1]/d12;
const Double_t d11 = diag(k)/d12;
const Double_t t = 1./(d11*d22-1.);
d12 = t/d12;
for (Int_t j = k-2; j >= 0; j--) {
Double_t *pU_j = pU+j*n;
const Double_t wkm1 = d12*(d11*pU_j[k-1]-pU_j[k]);
const Double_t wk = d12*(d22*pU_j[k]-pU_j[k-1]);
for (Int_t i = j; i >= 0; i--) {
Double_t *pU_i = pU+i*n;
pU_i[j] -= (pU_i[k]*wk+pU_i[k-1]*wkm1);
}
pU_j[k] = wk;
pU_j[k-1] = wkm1;
}
}
}
if (kstep == 1) {
fIpiv[k] = (kp+1);
} else {
fIpiv[k] = -(kp+1);
fIpiv[k-1] = -(kp+1);
}
}
k -= kstep;
}
if (!ok) SetBit(kSingular);
else SetBit(kDecomposed);
fU.Shift(fRowLwb,fRowLwb);
return ok;
}
void TDecompBK::SetMatrix(const TMatrixDSym &a)
{
R__ASSERT(a.IsValid());
ResetStatus();
SetBit(kMatrixSet);
fCondition = a.Norm1();
if (fNIpiv != a.GetNcols()) {
fNIpiv = a.GetNcols();
delete [] fIpiv;
fIpiv = new Int_t[fNIpiv];
memset(fIpiv,0,fNIpiv*sizeof(Int_t));
}
const Int_t nRows = a.GetNrows();
fColLwb = fRowLwb = a.GetRowLwb();
fU.ResizeTo(nRows,nRows);
memcpy(fU.GetMatrixArray(),a.GetMatrixArray(),nRows*nRows*sizeof(Double_t));
}
Bool_t TDecompBK::Solve(TVectorD &b)
{
R__ASSERT(b.IsValid());
if (TestBit(kSingular)) {
Error("Solve()","Matrix is singular");
return kFALSE;
}
if ( !TestBit(kDecomposed) ) {
if (!Decompose()) {
Error("Solve()","Decomposition failed");
return kFALSE;
}
}
if (fU.GetNrows() != b.GetNrows() || fU.GetRowLwb() != b.GetLwb()) {
Error("Solve(TVectorD &","vector and matrix incompatible");
return kFALSE;
}
const Int_t n = fU.GetNrows();
TMatrixDDiag_const diag(fU);
const Double_t *pU = fU.GetMatrixArray();
Double_t *pb = b.GetMatrixArray();
Int_t k = n-1;
while (k >= 0) {
if (fIpiv[k] > 0) {
const Int_t kp = fIpiv[k]-1;
if (kp != k) {
const Double_t tmp = pb[k];
pb[k] = pb[kp];
pb[kp] = tmp;
}
for (Int_t i = 0; i < k; i++)
pb[i] -= pU[i*n+k]*pb[k];
pb[k] /= diag(k);
k--;
} else {
const Int_t kp = -fIpiv[k]-1;
if (kp != k-1) {
const Double_t tmp = pb[k-1];
pb[k-1] = pb[kp];
pb[kp] = tmp;
}
Int_t i;
for (i = 0; i < k-1; i++)
pb[i] -= pU[i*n+k]*pb[k];
for (i = 0; i < k-1; i++)
pb[i] -= pU[i*n+k-1]*pb[k-1];
const Double_t *pU_k1 = pU+(k-1)*n;
const Double_t ukm1k = pU_k1[k];
const Double_t ukm1 = pU_k1[k-1]/ukm1k;
const Double_t uk = diag(k)/ukm1k;
const Double_t denom = ukm1*uk-1.;
const Double_t bkm1 = pb[k-1]/ukm1k;
const Double_t bk = pb[k]/ukm1k;
pb[k-1] = (uk*bkm1-bk)/denom;
pb[k] = (ukm1*bk-bkm1)/denom;
k -= 2;
}
}
k = 0;
while (k < n) {
if (fIpiv[k] > 0) {
for (Int_t i = 0; i < k; i++)
pb[k] -= pU[i*n+k]*pb[i];
const Int_t kp = fIpiv[k]-1;
if (kp != k) {
const Double_t tmp = pb[k];
pb[k] = pb[kp];
pb[kp] = tmp;
}
k++;
} else {
Int_t i ;
for (i = 0; i < k; i++)
pb[k] -= pU[i*n+k]*pb[i];
for (i = 0; i < k; i++)
pb[k+1] -= pU[i*n+k+1]*pb[i];
const Int_t kp = -fIpiv[k]-1;
if (kp != k) {
const Double_t tmp = pb[k];
pb[k] = pb[kp];
pb[kp] = tmp;
}
k += 2;
}
}
return kTRUE;
}
Bool_t TDecompBK::Solve(TMatrixDColumn &cb)
{
TMatrixDBase *b = const_cast<TMatrixDBase *>(cb.GetMatrix());
R__ASSERT(b->IsValid());
if (TestBit(kSingular)) {
Error("Solve()","Matrix is singular");
return kFALSE;
}
if ( !TestBit(kDecomposed) ) {
if (!Decompose()) {
Error("Solve()","Decomposition failed");
return kFALSE;
}
}
if (fU.GetNrows() != b->GetNrows() || fU.GetRowLwb() != b->GetRowLwb()) {
Error("Solve(TMatrixDColumn &","vector and matrix incompatible");
return kFALSE;
}
const Int_t n = fU.GetNrows();
TMatrixDDiag_const diag(fU);
const Double_t *pU = fU.GetMatrixArray();
Double_t *pcb = cb.GetPtr();
const Int_t inc = cb.GetInc();
Int_t k = n-1;
while (k >= 0) {
if (fIpiv[k] > 0) {
const Int_t kp = fIpiv[k]-1;
if (kp != k) {
const Double_t tmp = pcb[k*inc];
pcb[k*inc] = pcb[kp*inc];
pcb[kp*inc] = tmp;
}
for (Int_t i = 0; i < k; i++)
pcb[i*inc] -= pU[i*n+k]*pcb[k*inc];
pcb[k*inc] /= diag(k);
k--;
} else {
const Int_t kp = -fIpiv[k]-1;
if (kp != k-1) {
const Double_t tmp = pcb[(k-1)*inc];
pcb[(k-1)*inc] = pcb[kp*inc];
pcb[kp*inc] = tmp;
}
Int_t i;
for (i = 0; i < k-1; i++)
pcb[i*inc] -= pU[i*n+k]*pcb[k*inc];
for (i = 0; i < k-1; i++)
pcb[i*inc] -= pU[i*n+k-1]*pcb[(k-1)*inc];
const Double_t *pU_k1 = pU+(k-1)*n;
const Double_t ukm1k = pU_k1[k];
const Double_t ukm1 = pU_k1[k-1]/ukm1k;
const Double_t uk = diag(k)/ukm1k;
const Double_t denom = ukm1*uk-1.;
const Double_t bkm1 = pcb[(k-1)*inc]/ukm1k;
const Double_t bk = pcb[k*inc]/ukm1k;
pcb[(k-1)*inc] = (uk*bkm1-bk)/denom;
pcb[k*inc] = (ukm1*bk-bkm1)/denom;
k -= 2;
}
}
k = 0;
while (k < n) {
if (fIpiv[k] > 0) {
for (Int_t i = 0; i < k; i++)
pcb[k*inc] -= pU[i*n+k]*pcb[i*inc];
const Int_t kp = fIpiv[k]-1;
if (kp != k) {
const Double_t tmp = pcb[k*inc];
pcb[k*inc] = pcb[kp*inc];
pcb[kp*inc] = tmp;
}
k++;
} else {
Int_t i;
for (i = 0; i < k; i++)
pcb[k*inc] -= pU[i*n+k]*pcb[i*inc];
for (i = 0; i < k; i++)
pcb[(k+1)*inc] -= pU[i*n+k+1]*pcb[i*inc];
const Int_t kp = -fIpiv[k]-1;
if (kp != k) {
const Double_t tmp = pcb[k*inc];
pcb[k*inc] = pcb[kp*inc];
pcb[kp*inc] = tmp;
}
k += 2;
}
}
return kTRUE;
}
Bool_t TDecompBK::Invert(TMatrixDSym &inv)
{
if (inv.GetNrows() != GetNrows() || inv.GetRowLwb() != GetRowLwb()) {
Error("Invert(TMatrixDSym &","Input matrix has wrong shape");
return kFALSE;
}
inv.UnitMatrix();
const Int_t colLwb = inv.GetColLwb();
const Int_t colUpb = inv.GetColUpb();
Bool_t status = kTRUE;
for (Int_t icol = colLwb; icol <= colUpb && status; icol++) {
TMatrixDColumn b(inv,icol);
status &= Solve(b);
}
return status;
}
TMatrixDSym TDecompBK::Invert(Bool_t &status)
{
const Int_t rowLwb = GetRowLwb();
const Int_t rowUpb = rowLwb+GetNrows()-1;
TMatrixDSym inv(rowLwb,rowUpb);
inv.UnitMatrix();
status = Invert(inv);
return inv;
}
void TDecompBK::Print(Option_t *opt) const
{
TDecompBase::Print(opt);
printf("fIpiv:\n");
for (Int_t i = 0; i < fNIpiv; i++)
printf("[%d] = %d\n",i,fIpiv[i]);
fU.Print("fU");
}
TDecompBK &TDecompBK::operator=(const TDecompBK &source)
{
if (this != &source) {
TDecompBase::operator=(source);
fU.ResizeTo(source.fU);
fU = source.fU;
if (fNIpiv != source.fNIpiv) {
if (fIpiv)
delete [] fIpiv;
fNIpiv = source.fNIpiv;
fIpiv = new Int_t[fNIpiv];
}
if (fIpiv) memcpy(fIpiv,source.fIpiv,fNIpiv*sizeof(Int_t));
}
return *this;
}