#ifndef ROOT_TEveVector
#define ROOT_TEveVector
#include "TMath.h"
class TVector3;
template <typename TT>
class TEveVectorT
{
public:
TT fX, fY, fZ;
TEveVectorT() : fX(0), fY(0), fZ(0) {}
template <typename OO>
TEveVectorT(const TEveVectorT<OO>& v) : fX(v.fX), fY(v.fY), fZ(v.fZ) {}
TEveVectorT(const Float_t* v) : fX(v[0]), fY(v[1]), fZ(v[2]) {}
TEveVectorT(const Double_t* v) : fX(v[0]), fY(v[1]), fZ(v[2]) {}
TEveVectorT(TT x, TT y, TT z) : fX(x), fY(y), fZ(z) {}
void Dump() const;
operator const TT*() const { return &fX; }
operator TT*() { return &fX; }
TT operator [] (Int_t idx) const { return (&fX)[idx]; }
TT& operator [] (Int_t idx) { return (&fX)[idx]; }
const TT* Arr() const { return &fX; }
TT* Arr() { return &fX; }
TEveVectorT& operator*=(TT s) { fX *= s; fY *= s; fZ *= s; return *this; }
TEveVectorT& operator+=(const TEveVectorT& v) { fX += v.fX; fY += v.fY; fZ += v.fZ; return *this; }
TEveVectorT& operator-=(const TEveVectorT& v) { fX -= v.fX; fY -= v.fY; fZ -= v.fZ; return *this; }
void Set(const Float_t* v) { fX = v[0]; fY = v[1]; fZ = v[2]; }
void Set(const Double_t* v) { fX = v[0]; fY = v[1]; fZ = v[2]; }
void Set(TT x, TT y, TT z) { fX = x; fY = y; fZ = z; }
void Set(const TVector3& v);
template <typename OO>
void Set(const TEveVectorT<OO>& v) { fX = v.fX; fY = v.fY; fZ = v.fZ; }
void NegateXYZ() { fX = - fX; fY = -fY; fZ = -fZ; }
TT Normalize(TT length=1);
TT Phi() const;
TT Theta() const;
TT CosTheta() const;
TT Eta() const;
TT Mag2() const { return fX*fX + fY*fY + fZ*fZ; }
TT Mag() const { return TMath::Sqrt(Mag2()); }
TT Perp2() const { return fX*fX + fY*fY; }
TT Perp() const { return TMath::Sqrt(Perp2()); }
TT R() const { return Perp(); }
TT Distance(const TEveVectorT& v) const;
TT SquareDistance(const TEveVectorT& v) const;
TT Dot(const TEveVectorT& a) const;
TEveVectorT Cross(const TEveVectorT& a) const;
TEveVectorT& Sub(const TEveVectorT& a, const TEveVectorT& b);
TEveVectorT& Mult(const TEveVectorT& a, TT af);
TEveVectorT Orthogonal() const;
void OrthoNormBase(TEveVectorT& a, TEveVectorT& b) const;
Bool_t IsZero() const { return fX == 0 && fY == 0 && fZ == 0; }
ClassDefNV(TEveVectorT, 2);
};
typedef TEveVectorT<Float_t> TEveVector;
typedef TEveVectorT<Float_t> TEveVectorF;
typedef TEveVectorT<Double_t> TEveVectorD;
template<typename TT>
inline TT TEveVectorT<TT>::Phi() const
{
return fX == 0 && fY == 0 ? 0 : TMath::ATan2(fY, fX);
}
template<typename TT>
inline TT TEveVectorT<TT>::Theta() const
{
return fX == 0 && fY == 0 && fZ == 0 ? 0 : TMath::ATan2(Perp(), fZ);
}
template<typename TT>
inline TT TEveVectorT<TT>::CosTheta() const
{
Float_t ptot = Mag(); return ptot == 0 ? 1 : fZ/ptot;
}
template<typename TT>
inline TT TEveVectorT<TT>::Distance(const TEveVectorT& b) const
{
return TMath::Sqrt((fX - b.fX)*(fX - b.fX) +
(fY - b.fY)*(fY - b.fY) +
(fZ - b.fZ)*(fZ - b.fZ));
}
template<typename TT>
inline TT TEveVectorT<TT>::SquareDistance(const TEveVectorT& b) const
{
return ((fX - b.fX) * (fX - b.fX) +
(fY - b.fY) * (fY - b.fY) +
(fZ - b.fZ) * (fZ - b.fZ));
}
template<typename TT>
inline TT TEveVectorT<TT>::Dot(const TEveVectorT& a) const
{
return a.fX*fX + a.fY*fY + a.fZ*fZ;
}
template<typename TT>
inline TEveVectorT<TT> TEveVectorT<TT>::Cross(const TEveVectorT<TT>& a) const
{
TEveVectorT<TT> r;
r.fX = fY * a.fZ - fZ * a.fY;
r.fY = fZ * a.fX - fX * a.fZ;
r.fZ = fX * a.fY - fY * a.fX;
return r;
}
template<typename TT>
inline TEveVectorT<TT>& TEveVectorT<TT>::Sub(const TEveVectorT<TT>& a, const TEveVectorT<TT>& b)
{
fX = a.fX - b.fX;
fY = a.fY - b.fY;
fZ = a.fZ - b.fZ;
return *this;
}
template<typename TT>
inline TEveVectorT<TT>& TEveVectorT<TT>::Mult(const TEveVectorT<TT>& a, TT af)
{
fX = a.fX * af;
fY = a.fY * af;
fZ = a.fZ * af;
return *this;
}
template<typename TT>
inline TEveVectorT<TT> operator+(const TEveVectorT<TT>& a, const TEveVectorT<TT>& b)
{
TEveVectorT<TT> r(a);
return r += b;
}
template<typename TT>
inline TEveVectorT<TT> operator-(const TEveVectorT<TT>& a, const TEveVectorT<TT>& b)
{
TEveVectorT<TT> r(a);
return r -= b;
}
template<typename TT>
inline TEveVectorT<TT> operator*(const TEveVectorT<TT>& a, TT b)
{
TEveVectorT<TT> r(a);
return r *= b;
}
template<typename TT>
inline TEveVectorT<TT> operator*(TT b, const TEveVectorT<TT>& a)
{
TEveVectorT<TT> r(a);
return r *= b;
}
template <typename TT>
class TEveVector4T : public TEveVectorT<TT>
{
typedef TEveVectorT<TT> TP;
public:
TT fT;
TEveVector4T() : TP(), fT(0) {}
template <typename OO>
TEveVector4T(const TEveVectorT<OO>& v) : TP(v.fX, v.fY, v.fZ), fT(0) {}
template <typename OO>
TEveVector4T(const TEveVectorT<OO>& v, Float_t t) : TP(v.fX, v.fY, v.fZ), fT(t) {}
template <typename OO>
TEveVector4T(const TEveVector4T<OO>& v) : TP(v.fX, v.fY, v.fZ), fT(v.fT) {}
TEveVector4T(const Float_t* v) : TP(v), fT(v[3]) {}
TEveVector4T(const Double_t* v) : TP(v), fT(v[3]) {}
TEveVector4T(TT x, TT y, TT z, TT t=0) : TP(x, y, z), fT(t) {}
void Dump() const;
TEveVector4T& operator*=(TT s) { TP::operator*=(s); fT *= s; return *this; }
TEveVector4T& operator+=(const TEveVector4T& v) { TP::operator+=(v); fT += v.fT; return *this; }
TEveVector4T& operator-=(const TEveVector4T& v) { TP::operator-=(v); fT -= v.fT; return *this; }
using TP::operator+=;
using TP::operator-=;
ClassDefNV(TEveVector4T, 1);
};
typedef TEveVector4T<Float_t> TEveVector4;
typedef TEveVector4T<Float_t> TEveVector4F;
typedef TEveVector4T<Double_t> TEveVector4D;
template<typename TT>
inline TEveVector4T<TT> operator+(const TEveVector4T<TT>& a, const TEveVector4T<TT>& b)
{
return TEveVector4T<TT>(a.fX + b.fX, a.fY + b.fY, a.fZ + b.fZ, a.fT + b.fT);
}
template<typename TT>
inline TEveVector4T<TT> operator-(const TEveVector4T<TT>& a, const TEveVector4T<TT>& b)
{
return TEveVector4T<TT>(a.fX - b.fX, a.fY - b.fY, a.fZ - b.fZ, a.fT - b.fT);
}
template<typename TT>
inline TEveVector4T<TT> operator*(const TEveVector4T<TT>& a, TT b)
{
return TEveVector4T<TT>(a.fX*b, a.fY*b, a.fZ*b, a.fT*b);
}
template<typename TT>
inline TEveVector4T<TT> operator*(TT b, const TEveVector4T<TT>& a)
{
return TEveVector4T<TT>(a.fX*b, a.fY*b, a.fZ*b, a.fT*b);
}
template <typename TT>
class TEveVector2T
{
public:
TT fX, fY;
TEveVector2T() : fX(0), fY(0) {}
template <typename OO>
TEveVector2T(const TEveVector2T<OO>& v) : fX(v.fX), fY(v.fY) {}
TEveVector2T(const Float_t* v) : fX(v[0]), fY(v[1]) {}
TEveVector2T(const Double_t* v) : fX(v[0]), fY(v[1]) {}
TEveVector2T(TT x, TT y) : fX(x), fY(y) {}
void Dump() const;
operator const TT*() const { return &fX; }
operator TT*() { return &fX; }
TEveVector2T& operator*=(TT s) { fX *= s; fY *= s; return *this; }
TEveVector2T& operator+=(const TEveVector2T& v) { fX += v.fX; fY += v.fY; return *this; }
TEveVector2T& operator-=(const TEveVector2T& v) { fX -= v.fX; fY -= v.fY; return *this; }
TT& operator[](Int_t idx) { return (&fX)[idx]; }
TT operator[](Int_t idx) const { return (&fX)[idx]; }
const TT* Arr() const { return &fX; }
TT* Arr() { return &fX; }
void Set(const Float_t* v) { fX = v[0]; fY = v[1]; }
void Set(const Double_t* v) { fX = v[0]; fY = v[1]; }
void Set(TT x, TT y) { fX = x; fY = y; }
template <typename OO>
void Set(const TEveVector2T<OO>& v) { fX = v.fX; fY = v.fY; }
void NegateXY() { fX = - fX; fY = -fY; }
void Normalize(TT length=1);
TT Phi() const;
TT Mag2() const { return fX*fX + fY*fY;}
TT Mag() const { return TMath::Sqrt(Mag2());}
TT Distance(const TEveVector2T& v) const;
TT SquareDistance(const TEveVector2T& v) const;
TT Dot(const TEveVector2T& a) const;
TT Cross(const TEveVector2T& a) const;
TEveVector2T& Sub(const TEveVector2T& p, const TEveVector2T& q);
TEveVector2T& Mult(const TEveVector2T& a, TT af);
ClassDefNV(TEveVector2T, 1);
};
typedef TEveVector2T<Float_t> TEveVector2;
typedef TEveVector2T<Float_t> TEveVector2F;
typedef TEveVector2T<Double_t> TEveVector2D;
template<typename TT>
inline TT TEveVector2T<TT>::Phi() const
{
return fX == 0.0 && fY == 0.0 ? 0.0 : TMath::ATan2(fY, fX);
}
template<typename TT>
inline TT TEveVector2T<TT>::Distance( const TEveVector2T<TT>& b) const
{
return TMath::Sqrt((fX - b.fX)*(fX - b.fX) +
(fY - b.fY)*(fY - b.fY));
}
template<typename TT>
inline TT TEveVector2T<TT>::SquareDistance(const TEveVector2T<TT>& b) const
{
return ((fX - b.fX) * (fX - b.fX) +
(fY - b.fY) * (fY - b.fY));
}
template<typename TT>
inline TT TEveVector2T<TT>::Dot(const TEveVector2T<TT>& a) const
{
return a.fX*fX + a.fY*fY;
}
template<typename TT>
inline TT TEveVector2T<TT>::Cross(const TEveVector2T<TT>& a) const
{
return fX * a.fY - fY * a.fX;
}
template<typename TT>
inline TEveVector2T<TT>& TEveVector2T<TT>::Sub(const TEveVector2T<TT>& p, const TEveVector2T<TT>& q)
{
fX = p.fX - q.fX;
fY = p.fY - q.fY;
return *this;
}
template<typename TT>
inline TEveVector2T<TT>& TEveVector2T<TT>::Mult(const TEveVector2T<TT>& a, TT af)
{
fX = a.fX * af;
fY = a.fY * af;
return *this;
}
template<typename TT>
inline TEveVector2T<TT> operator+(const TEveVector2T<TT>& a, const TEveVector2T<TT>& b)
{
TEveVector2T<TT> r(a);
return r += b;
}
template<typename TT>
inline TEveVector2T<TT> operator-(const TEveVector2T<TT>& a, const TEveVector2T<TT>& b)
{
TEveVector2T<TT> r(a);
return r -= b;
}
template<typename TT>
inline TEveVector2T<TT> operator*(const TEveVector2T<TT>& a, TT b)
{
TEveVector2T<TT> r(a);
return r *= b;
}
template<typename TT>
inline TEveVector2T<TT> operator*(TT b, const TEveVector2T<TT>& a)
{
TEveVector2T<TT> r(a);
return r *= b;
}
#endif