#include "TMatrixTSym.h"
#include "TMatrixTLazy.h"
#include "TMatrixTSymCramerInv.h"
#include "TDecompLU.h"
#include "TMatrixDSymEigen.h"
#include "TClass.h"
#include "TMath.h"
templateClassImp(TMatrixTSym)
template<class Element>
TMatrixTSym<Element>::TMatrixTSym(Int_t no_rows)
{
Allocate(no_rows,no_rows,0,0,1);
}
template<class Element>
TMatrixTSym<Element>::TMatrixTSym(Int_t row_lwb,Int_t row_upb)
{
const Int_t no_rows = row_upb-row_lwb+1;
Allocate(no_rows,no_rows,row_lwb,row_lwb,1);
}
template<class Element>
TMatrixTSym<Element>::TMatrixTSym(Int_t no_rows,const Element *elements,Option_t *option)
{
Allocate(no_rows,no_rows);
SetMatrixArray(elements,option);
if (!this->IsSymmetric()) {
Error("TMatrixTSym(Int_t,Element*,Option_t*)","matrix not symmetric");
}
}
template<class Element>
TMatrixTSym<Element>::TMatrixTSym(Int_t row_lwb,Int_t row_upb,const Element *elements,Option_t *option)
{
const Int_t no_rows = row_upb-row_lwb+1;
Allocate(no_rows,no_rows,row_lwb,row_lwb);
SetMatrixArray(elements,option);
if (!this->IsSymmetric()) {
Error("TMatrixTSym(Int_t,Int_t,Element*,Option_t*)","matrix not symmetric");
}
}
template<class Element>
TMatrixTSym<Element>::TMatrixTSym(const TMatrixTSym<Element> &another) : TMatrixTBase<Element>(another)
{
R__ASSERT(another.IsValid());
Allocate(another.GetNrows(),another.GetNcols(),another.GetRowLwb(),another.GetColLwb());
*this = another;
}
template<class Element>
TMatrixTSym<Element>::TMatrixTSym(EMatrixCreatorsOp1 op,const TMatrixTSym<Element> &prototype)
{
R__ASSERT(prototype.IsValid());
switch(op) {
case kZero:
Allocate(prototype.GetNrows(),prototype.GetNcols(),
prototype.GetRowLwb(),prototype.GetColLwb(),1);
break;
case kUnit:
Allocate(prototype.GetNrows(),prototype.GetNcols(),
prototype.GetRowLwb(),prototype.GetColLwb(),1);
this->UnitMatrix();
break;
case kTransposed:
Allocate(prototype.GetNcols(), prototype.GetNrows(),
prototype.GetColLwb(),prototype.GetRowLwb());
Transpose(prototype);
break;
case kInverted:
{
Allocate(prototype.GetNrows(),prototype.GetNcols(),
prototype.GetRowLwb(),prototype.GetColLwb(),1);
*this = prototype;
const Element oldTol = this->SetTol(std::numeric_limits<Element>::min());
this->Invert();
this->SetTol(oldTol);
break;
}
case kAtA:
Allocate(prototype.GetNcols(),prototype.GetNcols(),prototype.GetColLwb(),prototype.GetColLwb(),1);
TMult(prototype);
break;
default:
Error("TMatrixTSym(EMatrixCreatorOp1,const TMatrixTSym)",
"operation %d not yet implemented", op);
}
}
template<class Element>
TMatrixTSym<Element>::TMatrixTSym(EMatrixCreatorsOp1 op,const TMatrixT<Element> &prototype)
{
R__ASSERT(prototype.IsValid());
switch(op) {
case kAtA:
Allocate(prototype.GetNcols(),prototype.GetNcols(),prototype.GetColLwb(),prototype.GetColLwb(),1);
TMult(prototype);
break;
default:
Error("TMatrixTSym(EMatrixCreatorOp1,const TMatrixT)",
"operation %d not yet implemented", op);
}
}
template<class Element>
TMatrixTSym<Element>::TMatrixTSym(const TMatrixTSym<Element> &a,EMatrixCreatorsOp2 op,const TMatrixTSym<Element> &b)
{
R__ASSERT(a.IsValid());
R__ASSERT(b.IsValid());
switch(op) {
case kPlus:
{
Allocate(a.GetNcols(),a.GetNcols(),a.GetColLwb(),a.GetColLwb(),1);
Plus(a,b);
break;
}
case kMinus:
{
Allocate(a.GetNcols(),a.GetNcols(),a.GetColLwb(),a.GetColLwb(),1);
Minus(a,b);
break;
}
default:
Error("TMatrixTSym(EMatrixCreatorOp2)", "operation %d not yet implemented", op);
}
}
template<class Element>
TMatrixTSym<Element>::TMatrixTSym(const TMatrixTSymLazy<Element> &lazy_constructor)
{
Allocate(lazy_constructor.GetRowUpb()-lazy_constructor.GetRowLwb()+1,
lazy_constructor.GetRowUpb()-lazy_constructor.GetRowLwb()+1,
lazy_constructor.GetRowLwb(),lazy_constructor.GetRowLwb(),1);
lazy_constructor.FillIn(*this);
if (!this->IsSymmetric()) {
Error("TMatrixTSym(TMatrixTSymLazy)","matrix not symmetric");
}
}
template<class Element>
void TMatrixTSym<Element>::Delete_m(Int_t size,Element *&m)
{
if (m) {
if (size > this->kSizeMax)
delete [] m;
m = 0;
}
}
template<class Element>
Element* TMatrixTSym<Element>::New_m(Int_t size)
{
if (size == 0) return 0;
else {
if ( size <= this->kSizeMax )
return fDataStack;
else {
Element *heap = new Element[size];
return heap;
}
}
}
template<class Element>
Int_t TMatrixTSym<Element>::Memcpy_m(Element *newp,const Element *oldp,Int_t copySize,
Int_t newSize,Int_t oldSize)
{
if (copySize == 0 || oldp == newp)
return 0;
else {
if ( newSize <= this->kSizeMax && oldSize <= this->kSizeMax ) {
if (newp > oldp) {
for (Int_t i = copySize-1; i >= 0; i--)
newp[i] = oldp[i];
} else {
for (Int_t i = 0; i < copySize; i++)
newp[i] = oldp[i];
}
}
else
memcpy(newp,oldp,copySize*sizeof(Element));
}
return 0;
}
template<class Element>
void TMatrixTSym<Element>::Allocate(Int_t no_rows,Int_t no_cols,Int_t row_lwb,Int_t col_lwb,
Int_t init,Int_t )
{
this->fIsOwner = kTRUE;
this->fTol = std::numeric_limits<Element>::epsilon();
this->fNrows = 0;
this->fNcols = 0;
this->fRowLwb = 0;
this->fColLwb = 0;
this->fNelems = 0;
fElements = 0;
if (no_rows < 0 || no_cols < 0)
{
Error("Allocate","no_rows=%d no_cols=%d",no_rows,no_cols);
this->Invalidate();
return;
}
this->MakeValid();
this->fNrows = no_rows;
this->fNcols = no_cols;
this->fRowLwb = row_lwb;
this->fColLwb = col_lwb;
this->fNelems = this->fNrows*this->fNcols;
if (this->fNelems > 0) {
fElements = New_m(this->fNelems);
if (init)
memset(fElements,0,this->fNelems*sizeof(Element));
} else
fElements = 0;
}
template<class Element>
void TMatrixTSym<Element>::Plus(const TMatrixTSym<Element> &a,const TMatrixTSym<Element> &b)
{
if (gMatrixCheck) {
if (!AreCompatible(a,b)) {
Error("Plus","matrices not compatible");
return;
}
if (this->GetMatrixArray() == a.GetMatrixArray()) {
Error("Plus","this->GetMatrixArray() == a.GetMatrixArray()");
return;
}
if (this->GetMatrixArray() == b.GetMatrixArray()) {
Error("Plus","this->GetMatrixArray() == b.GetMatrixArray()");
return;
}
}
const Element * ap = a.GetMatrixArray();
const Element * bp = b.GetMatrixArray();
Element * cp = this->GetMatrixArray();
const Element * const cp_last = cp+this->fNelems;
while (cp < cp_last) {
*cp = *ap++ + *bp++;
cp++;
}
}
template<class Element>
void TMatrixTSym<Element>::Minus(const TMatrixTSym<Element> &a,const TMatrixTSym<Element> &b)
{
if (gMatrixCheck) {
if (!AreCompatible(a,b)) {
Error("Minus","matrices not compatible");
return;
}
if (this->GetMatrixArray() == a.GetMatrixArray()) {
Error("Minus","this->GetMatrixArray() == a.GetMatrixArray()");
return;
}
if (this->GetMatrixArray() == b.GetMatrixArray()) {
Error("Minus","this->GetMatrixArray() == b.GetMatrixArray()");
return;
}
}
const Element * ap = a.GetMatrixArray();
const Element * bp = b.GetMatrixArray();
Element * cp = this->GetMatrixArray();
const Element * const cp_last = cp+this->fNelems;
while (cp < cp_last) {
*cp = *ap++ - *bp++;
cp++;
}
}
template<class Element>
void TMatrixTSym<Element>::TMult(const TMatrixT<Element> &a)
{
R__ASSERT(a.IsValid());
#ifdef CBLAS
const Element *ap = a.GetMatrixArray();
Element *cp = this->GetMatrixArray();
if (typeid(Element) == typeid(Double_t))
cblas_dgemm (CblasRowMajor,CblasTrans,CblasNoTrans,this->fNrows,this->fNcols,a.GetNrows(),
1.0,ap,a.GetNcols(),ap,a.GetNcols(),1.0,cp,this->fNcols);
else if (typeid(Element) != typeid(Float_t))
cblas_sgemm (CblasRowMajor,CblasTrans,CblasNoTrans,fNrows,fNcols,a.GetNrows(),
1.0,ap,a.GetNcols(),ap,a.GetNcols(),1.0,cp,fNcols);
else
Error("TMult","type %s not implemented in BLAS library",typeid(Element));
#else
const Int_t nb = a.GetNoElements();
const Int_t ncolsa = a.GetNcols();
const Int_t ncolsb = ncolsa;
const Element * const ap = a.GetMatrixArray();
const Element * const bp = ap;
Element * cp = this->GetMatrixArray();
const Element *acp0 = ap;
while (acp0 < ap+a.GetNcols()) {
for (const Element *bcp = bp; bcp < bp+ncolsb; ) {
const Element *acp = acp0;
Element cij = 0;
while (bcp < bp+nb) {
cij += *acp * *bcp;
acp += ncolsa;
bcp += ncolsb;
}
*cp++ = cij;
bcp -= nb-1;
}
acp0++;
}
R__ASSERT(cp == this->GetMatrixArray()+this->fNelems && acp0 == ap+ncolsa);
#endif
}
template<class Element>
void TMatrixTSym<Element>::TMult(const TMatrixTSym<Element> &a)
{
R__ASSERT(a.IsValid());
#ifdef CBLAS
const Element *ap = a.GetMatrixArray();
Element *cp = this->GetMatrixArray();
if (typeid(Element) == typeid(Double_t))
cblas_dsymm (CblasRowMajor,CblasLeft,CblasUpper,this->fNrows,this->fNcols,1.0,
ap,a.GetNcols(),ap,a.GetNcols(),0.0,cp,this->fNcols);
else if (typeid(Element) != typeid(Float_t))
cblas_ssymm (CblasRowMajor,CblasLeft,CblasUpper,fNrows,fNcols,1.0,
ap1,a.GetNcols(),ap,a.GetNcols(),0.0,cp,fNcols);
else
Error("TMult","type %s not implemented in BLAS library",typeid(Element));
#else
const Int_t nb = a.GetNoElements();
const Int_t ncolsa = a.GetNcols();
const Int_t ncolsb = ncolsa;
const Element * const ap = a.GetMatrixArray();
const Element * const bp = ap;
Element * cp = this->GetMatrixArray();
const Element *acp0 = ap;
while (acp0 < ap+a.GetNcols()) {
for (const Element *bcp = bp; bcp < bp+ncolsb; ) {
const Element *acp = acp0;
Element cij = 0;
while (bcp < bp+nb) {
cij += *acp * *bcp;
acp += ncolsa;
bcp += ncolsb;
}
*cp++ = cij;
bcp -= nb-1;
}
acp0++;
}
R__ASSERT(cp == this->GetMatrixArray()+this->fNelems && acp0 == ap+ncolsa);
#endif
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::Use(Int_t row_lwb,Int_t row_upb,Element *data)
{
if (gMatrixCheck && row_upb < row_lwb)
{
Error("Use","row_upb=%d < row_lwb=%d",row_upb,row_lwb);
return *this;
}
this->Clear();
this->fNrows = row_upb-row_lwb+1;
this->fNcols = this->fNrows;
this->fRowLwb = row_lwb;
this->fColLwb = row_lwb;
this->fNelems = this->fNrows*this->fNcols;
fElements = data;
this->fIsOwner = kFALSE;
return *this;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::GetSub(Int_t row_lwb,Int_t row_upb,
TMatrixTSym<Element> &target,Option_t *option) const
{
if (gMatrixCheck) {
R__ASSERT(this->IsValid());
if (row_lwb < this->fRowLwb || row_lwb > this->fRowLwb+this->fNrows-1) {
Error("GetSub","row_lwb out of bounds");
return target;
}
if (row_upb < this->fRowLwb || row_upb > this->fRowLwb+this->fNrows-1) {
Error("GetSub","row_upb out of bounds");
return target;
}
if (row_upb < row_lwb) {
Error("GetSub","row_upb < row_lwb");
return target;
}
}
TString opt(option);
opt.ToUpper();
const Int_t shift = (opt.Contains("S")) ? 1 : 0;
Int_t row_lwb_sub;
Int_t row_upb_sub;
if (shift) {
row_lwb_sub = 0;
row_upb_sub = row_upb-row_lwb;
} else {
row_lwb_sub = row_lwb;
row_upb_sub = row_upb;
}
target.ResizeTo(row_lwb_sub,row_upb_sub,row_lwb_sub,row_upb_sub);
const Int_t nrows_sub = row_upb_sub-row_lwb_sub+1;
if (target.GetRowIndexArray() && target.GetColIndexArray()) {
for (Int_t irow = 0; irow < nrows_sub; irow++) {
for (Int_t icol = 0; icol < nrows_sub; icol++) {
target(irow+row_lwb_sub,icol+row_lwb_sub) = (*this)(row_lwb+irow,row_lwb+icol);
}
}
} else {
const Element *ap = this->GetMatrixArray()+(row_lwb-this->fRowLwb)*this->fNrows+(row_lwb-this->fRowLwb);
Element *bp = target.GetMatrixArray();
for (Int_t irow = 0; irow < nrows_sub; irow++) {
const Element *ap_sub = ap;
for (Int_t icol = 0; icol < nrows_sub; icol++) {
*bp++ = *ap_sub++;
}
ap += this->fNrows;
}
}
return target;
}
template<class Element>
TMatrixTBase<Element> &TMatrixTSym<Element>::GetSub(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,
TMatrixTBase<Element> &target,Option_t *option) const
{
if (gMatrixCheck) {
R__ASSERT(this->IsValid());
if (row_lwb < this->fRowLwb || row_lwb > this->fRowLwb+this->fNrows-1) {
Error("GetSub","row_lwb out of bounds");
return target;
}
if (col_lwb < this->fColLwb || col_lwb > this->fColLwb+this->fNcols-1) {
Error("GetSub","col_lwb out of bounds");
return target;
}
if (row_upb < this->fRowLwb || row_upb > this->fRowLwb+this->fNrows-1) {
Error("GetSub","row_upb out of bounds");
return target;
}
if (col_upb < this->fColLwb || col_upb > this->fColLwb+this->fNcols-1) {
Error("GetSub","col_upb out of bounds");
return target;
}
if (row_upb < row_lwb || col_upb < col_lwb) {
Error("GetSub","row_upb < row_lwb || col_upb < col_lwb");
return target;
}
}
TString opt(option);
opt.ToUpper();
const Int_t shift = (opt.Contains("S")) ? 1 : 0;
const Int_t row_lwb_sub = (shift) ? 0 : row_lwb;
const Int_t row_upb_sub = (shift) ? row_upb-row_lwb : row_upb;
const Int_t col_lwb_sub = (shift) ? 0 : col_lwb;
const Int_t col_upb_sub = (shift) ? col_upb-col_lwb : col_upb;
target.ResizeTo(row_lwb_sub,row_upb_sub,col_lwb_sub,col_upb_sub);
const Int_t nrows_sub = row_upb_sub-row_lwb_sub+1;
const Int_t ncols_sub = col_upb_sub-col_lwb_sub+1;
if (target.GetRowIndexArray() && target.GetColIndexArray()) {
for (Int_t irow = 0; irow < nrows_sub; irow++) {
for (Int_t icol = 0; icol < ncols_sub; icol++) {
target(irow+row_lwb_sub,icol+col_lwb_sub) = (*this)(row_lwb+irow,col_lwb+icol);
}
}
} else {
const Element *ap = this->GetMatrixArray()+(row_lwb-this->fRowLwb)*this->fNcols+(col_lwb-this->fColLwb);
Element *bp = target.GetMatrixArray();
for (Int_t irow = 0; irow < nrows_sub; irow++) {
const Element *ap_sub = ap;
for (Int_t icol = 0; icol < ncols_sub; icol++) {
*bp++ = *ap_sub++;
}
ap += this->fNcols;
}
}
return target;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::SetSub(Int_t row_lwb,const TMatrixTBase<Element> &source)
{
if (gMatrixCheck) {
R__ASSERT(this->IsValid());
R__ASSERT(source.IsValid());
if (!source.IsSymmetric()) {
Error("SetSub","source matrix is not symmetric");
return *this;
}
if (row_lwb < this->fRowLwb || row_lwb > this->fRowLwb+this->fNrows-1) {
Error("SetSub","row_lwb outof bounds");
return *this;
}
if (row_lwb+source.GetNrows() > this->fRowLwb+this->fNrows) {
Error("SetSub","source matrix too large");
return *this;
}
}
const Int_t nRows_source = source.GetNrows();
if (source.GetRowIndexArray() && source.GetColIndexArray()) {
const Int_t rowlwb_s = source.GetRowLwb();
for (Int_t irow = 0; irow < nRows_source; irow++) {
for (Int_t icol = 0; icol < nRows_source; icol++) {
(*this)(row_lwb+irow,row_lwb+icol) = source(rowlwb_s+irow,rowlwb_s+icol);
}
}
} else {
const Element *bp = source.GetMatrixArray();
Element *ap = this->GetMatrixArray()+(row_lwb-this->fRowLwb)*this->fNrows+(row_lwb-this->fRowLwb);
for (Int_t irow = 0; irow < nRows_source; irow++) {
Element *ap_sub = ap;
for (Int_t icol = 0; icol < nRows_source; icol++) {
*ap_sub++ = *bp++;
}
ap += this->fNrows;
}
}
return *this;
}
template<class Element>
TMatrixTBase<Element> &TMatrixTSym<Element>::SetSub(Int_t row_lwb,Int_t col_lwb,const TMatrixTBase<Element> &source)
{
if (gMatrixCheck) {
R__ASSERT(this->IsValid());
R__ASSERT(source.IsValid());
if (row_lwb < this->fRowLwb || row_lwb > this->fRowLwb+this->fNrows-1) {
Error("SetSub","row_lwb out of bounds");
return *this;
}
if (col_lwb < this->fColLwb || col_lwb > this->fColLwb+this->fNcols-1) {
Error("SetSub","col_lwb out of bounds");
return *this;
}
if (row_lwb+source.GetNrows() > this->fRowLwb+this->fNrows || col_lwb+source.GetNcols() > this->fRowLwb+this->fNrows) {
Error("SetSub","source matrix too large");
return *this;
}
if (col_lwb+source.GetNcols() > this->fRowLwb+this->fNrows || row_lwb+source.GetNrows() > this->fRowLwb+this->fNrows) {
Error("SetSub","source matrix too large");
return *this;
}
}
const Int_t nRows_source = source.GetNrows();
const Int_t nCols_source = source.GetNcols();
const Int_t rowlwb_s = source.GetRowLwb();
const Int_t collwb_s = source.GetColLwb();
if (row_lwb >= col_lwb) {
Int_t irow;
for (irow = 0; irow < nRows_source; irow++) {
for (Int_t icol = 0; col_lwb+icol <= row_lwb+irow &&
icol < nCols_source; icol++) {
(*this)(row_lwb+irow,col_lwb+icol) = source(irow+rowlwb_s,icol+collwb_s);
}
}
for (irow = 0; irow < nCols_source; irow++) {
for (Int_t icol = nRows_source-1; row_lwb+icol > irow+col_lwb &&
icol >= 0; icol--) {
(*this)(col_lwb+irow,row_lwb+icol) = source(icol+rowlwb_s,irow+collwb_s);
}
}
} else {
}
return *this;
}
template<class Element>
TMatrixTBase<Element> &TMatrixTSym<Element>::SetMatrixArray(const Element *data,Option_t *option)
{
TMatrixTBase<Element>::SetMatrixArray(data,option);
if (!this->IsSymmetric()) {
Error("SetMatrixArray","Matrix is not symmetric after Set");
}
return *this;
}
template<class Element>
TMatrixTBase<Element> &TMatrixTSym<Element>::Shift(Int_t row_shift,Int_t col_shift)
{
if (row_shift != col_shift) {
Error("Shift","row_shift != col_shift");
return *this;
}
return TMatrixTBase<Element>::Shift(row_shift,col_shift);
}
template<class Element>
TMatrixTBase<Element> &TMatrixTSym<Element>::ResizeTo(Int_t nrows,Int_t ncols,Int_t )
{
R__ASSERT(this->IsValid());
if (!this->fIsOwner) {
Error("ResizeTo(Int_t,Int_t)","Not owner of data array,cannot resize");
return *this;
}
if (nrows != ncols) {
Error("ResizeTo(Int_t,Int_t)","nrows != ncols");
return *this;
}
if (this->fNelems > 0) {
if (this->fNrows == nrows && this->fNcols == ncols)
return *this;
else if (nrows == 0 || ncols == 0) {
this->fNrows = nrows; this->fNcols = ncols;
this->Clear();
return *this;
}
Element *elements_old = GetMatrixArray();
const Int_t nelems_old = this->fNelems;
const Int_t nrows_old = this->fNrows;
const Int_t ncols_old = this->fNcols;
Allocate(nrows,ncols);
R__ASSERT(this->IsValid());
Element *elements_new = GetMatrixArray();
if (this->fNelems > this->kSizeMax || nelems_old > this->kSizeMax)
memset(elements_new,0,this->fNelems*sizeof(Element));
else if (this->fNelems > nelems_old)
memset(elements_new+nelems_old,0,(this->fNelems-nelems_old)*sizeof(Element));
const Int_t ncols_copy = TMath::Min(this->fNcols,ncols_old);
const Int_t nrows_copy = TMath::Min(this->fNrows,nrows_old);
const Int_t nelems_new = this->fNelems;
if (ncols_old < this->fNcols) {
for (Int_t i = nrows_copy-1; i >= 0; i--) {
Memcpy_m(elements_new+i*this->fNcols,elements_old+i*ncols_old,ncols_copy,
nelems_new,nelems_old);
if (this->fNelems <= this->kSizeMax && nelems_old <= this->kSizeMax)
memset(elements_new+i*this->fNcols+ncols_copy,0,(this->fNcols-ncols_copy)*sizeof(Element));
}
} else {
for (Int_t i = 0; i < nrows_copy; i++)
Memcpy_m(elements_new+i*this->fNcols,elements_old+i*ncols_old,ncols_copy,
nelems_new,nelems_old);
}
Delete_m(nelems_old,elements_old);
} else {
Allocate(nrows,ncols,0,0,1);
}
return *this;
}
template<class Element>
TMatrixTBase<Element> &TMatrixTSym<Element>::ResizeTo(Int_t row_lwb,Int_t row_upb,Int_t col_lwb,Int_t col_upb,
Int_t )
{
R__ASSERT(this->IsValid());
if (!this->fIsOwner) {
Error("ResizeTo(Int_t,Int_t,Int_t,Int_t)","Not owner of data array,cannot resize");
return *this;
}
if (row_lwb != col_lwb) {
Error("ResizeTo(Int_t,Int_t,Int_t,Int_t)","row_lwb != col_lwb");
return *this;
}
if (row_upb != col_upb) {
Error("ResizeTo(Int_t,Int_t,Int_t,Int_t)","row_upb != col_upb");
return *this;
}
const Int_t new_nrows = row_upb-row_lwb+1;
const Int_t new_ncols = col_upb-col_lwb+1;
if (this->fNelems > 0) {
if (this->fNrows == new_nrows && this->fNcols == new_ncols &&
this->fRowLwb == row_lwb && this->fColLwb == col_lwb)
return *this;
else if (new_nrows == 0 || new_ncols == 0) {
this->fNrows = new_nrows; this->fNcols = new_ncols;
this->fRowLwb = row_lwb; this->fColLwb = col_lwb;
this->Clear();
return *this;
}
Element *elements_old = GetMatrixArray();
const Int_t nelems_old = this->fNelems;
const Int_t nrows_old = this->fNrows;
const Int_t ncols_old = this->fNcols;
const Int_t rowLwb_old = this->fRowLwb;
const Int_t colLwb_old = this->fColLwb;
Allocate(new_nrows,new_ncols,row_lwb,col_lwb);
R__ASSERT(this->IsValid());
Element *elements_new = GetMatrixArray();
if (this->fNelems > this->kSizeMax || nelems_old > this->kSizeMax)
memset(elements_new,0,this->fNelems*sizeof(Element));
else if (this->fNelems > nelems_old)
memset(elements_new+nelems_old,0,(this->fNelems-nelems_old)*sizeof(Element));
const Int_t rowLwb_copy = TMath::Max(this->fRowLwb,rowLwb_old);
const Int_t colLwb_copy = TMath::Max(this->fColLwb,colLwb_old);
const Int_t rowUpb_copy = TMath::Min(this->fRowLwb+this->fNrows-1,rowLwb_old+nrows_old-1);
const Int_t colUpb_copy = TMath::Min(this->fColLwb+this->fNcols-1,colLwb_old+ncols_old-1);
const Int_t nrows_copy = rowUpb_copy-rowLwb_copy+1;
const Int_t ncols_copy = colUpb_copy-colLwb_copy+1;
if (nrows_copy > 0 && ncols_copy > 0) {
const Int_t colOldOff = colLwb_copy-colLwb_old;
const Int_t colNewOff = colLwb_copy-this->fColLwb;
if (ncols_old < this->fNcols) {
for (Int_t i = nrows_copy-1; i >= 0; i--) {
const Int_t iRowOld = rowLwb_copy+i-rowLwb_old;
const Int_t iRowNew = rowLwb_copy+i-this->fRowLwb;
Memcpy_m(elements_new+iRowNew*this->fNcols+colNewOff,
elements_old+iRowOld*ncols_old+colOldOff,ncols_copy,this->fNelems,nelems_old);
if (this->fNelems <= this->kSizeMax && nelems_old <= this->kSizeMax)
memset(elements_new+iRowNew*this->fNcols+colNewOff+ncols_copy,0,
(this->fNcols-ncols_copy)*sizeof(Element));
}
} else {
for (Int_t i = 0; i < nrows_copy; i++) {
const Int_t iRowOld = rowLwb_copy+i-rowLwb_old;
const Int_t iRowNew = rowLwb_copy+i-this->fRowLwb;
Memcpy_m(elements_new+iRowNew*this->fNcols+colNewOff,
elements_old+iRowOld*ncols_old+colOldOff,ncols_copy,this->fNelems,nelems_old);
}
}
}
Delete_m(nelems_old,elements_old);
} else {
Allocate(new_nrows,new_ncols,row_lwb,col_lwb,1);
}
return *this;
}
template<class Element>
Double_t TMatrixTSym<Element>::Determinant() const
{
const TMatrixT<Element> &tmp = *this;
TDecompLU lu(tmp,this->fTol);
Double_t d1,d2;
lu.Det(d1,d2);
return d1*TMath::Power(2.0,d2);
}
template<class Element>
void TMatrixTSym<Element>::Determinant(Double_t &d1,Double_t &d2) const
{
const TMatrixT<Element> &tmp = *this;
TDecompLU lu(tmp,this->fTol);
lu.Det(d1,d2);
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::Invert(Double_t *det)
{
R__ASSERT(this->IsValid());
TMatrixD tmp(*this);
if (TDecompLU::InvertLU(tmp,Double_t(this->fTol),det)) {
const Double_t *p1 = tmp.GetMatrixArray();
Element *p2 = this->GetMatrixArray();
for (Int_t i = 0; i < this->GetNoElements(); i++)
p2[i] = p1[i];
}
return *this;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::InvertFast(Double_t *det)
{
R__ASSERT(this->IsValid());
const Char_t nRows = Char_t(this->GetNrows());
switch (nRows) {
case 1:
{
Element *pM = this->GetMatrixArray();
if (*pM == 0.) {
Error("InvertFast","matrix is singular");
*det = 0;
} else {
*det = *pM;
*pM = 1.0/(*pM);
}
return *this;
}
case 2:
{
TMatrixTSymCramerInv::Inv2x2<Element>(*this,det);
return *this;
}
case 3:
{
TMatrixTSymCramerInv::Inv3x3<Element>(*this,det);
return *this;
}
case 4:
{
TMatrixTSymCramerInv::Inv4x4<Element>(*this,det);
return *this;
}
case 5:
{
TMatrixTSymCramerInv::Inv5x5<Element>(*this,det);
return *this;
}
case 6:
{
TMatrixTSymCramerInv::Inv6x6<Element>(*this,det);
return *this;
}
default:
{
TMatrixD tmp(*this);
if (TDecompLU::InvertLU(tmp,Double_t(this->fTol),det)) {
const Double_t *p1 = tmp.GetMatrixArray();
Element *p2 = this->GetMatrixArray();
for (Int_t i = 0; i < this->GetNoElements(); i++)
p2[i] = p1[i];
}
return *this;
}
}
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::Transpose(const TMatrixTSym<Element> &source)
{
if (gMatrixCheck) {
R__ASSERT(this->IsValid());
R__ASSERT(source.IsValid());
if (this->fNrows != source.GetNcols() || this->fRowLwb != source.GetColLwb())
{
Error("Transpose","matrix has wrong shape");
return *this;
}
}
*this = source;
return *this;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::Rank1Update(const TVectorT<Element> &v,Element alpha)
{
if (gMatrixCheck) {
R__ASSERT(this->IsValid());
R__ASSERT(v.IsValid());
if (v.GetNoElements() < this->fNrows) {
Error("Rank1Update","vector too short");
return *this;
}
}
const Element * const pv = v.GetMatrixArray();
Element *trp = this->GetMatrixArray();
Element *tcp = trp;
for (Int_t i = 0; i < this->fNrows; i++) {
trp += i;
tcp += i*this->fNcols;
const Element tmp = alpha*pv[i];
for (Int_t j = i; j < this->fNcols; j++) {
if (j > i) *tcp += tmp*pv[j];
*trp++ += tmp*pv[j];
tcp += this->fNcols;
}
tcp -= this->fNelems-1;
}
return *this;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::Similarity(const TMatrixT<Element> &b)
{
if (gMatrixCheck) {
R__ASSERT(this->IsValid());
R__ASSERT(b.IsValid());
if (this->fNcols != b.GetNcols() || this->fColLwb != b.GetColLwb()) {
Error("Similarity(const TMatrixT &)","matrices incompatible");
return *this;
}
}
const Int_t ncolsa = this->fNcols;
const Int_t nb = b.GetNoElements();
const Int_t nrowsb = b.GetNrows();
const Int_t ncolsb = b.GetNcols();
const Element * const bp = b.GetMatrixArray();
Element work[kWorkMax];
Bool_t isAllocated = kFALSE;
Element *bap = work;
if (nrowsb*ncolsa > kWorkMax) {
isAllocated = kTRUE;
bap = new Element[nrowsb*ncolsa];
}
AMultB(bp,nb,ncolsb,this->fElements,this->fNelems,this->fNcols,bap);
if (nrowsb != this->fNrows)
this->ResizeTo(nrowsb,nrowsb);
#ifdef CBLAS
Element *cp = this->GetMatrixArray();
if (typeid(Element) == typeid(Double_t))
cblas_dgemm (CblasRowMajor,CblasNoTrans,CblasTrans,this->fNrows,this->fNcols,ba.GetNcols(),
1.0,bap,ba.GetNcols(),bp,b.GetNcols(),1.0,cp,this->fNcols);
else if (typeid(Element) != typeid(Float_t))
cblas_sgemm (CblasRowMajor,CblasNoTrans,CblasTrans,this->fNrows,this->fNcols,ba.GetNcols(),
1.0,bap,ba.GetNcols(),bp,b.GetNcols(),1.0,cp,this->fNcols);
else
Error("Similarity","type %s not implemented in BLAS library",typeid(Element));
#else
const Int_t nba = nrowsb*ncolsa;
const Int_t ncolsba = ncolsa;
const Element * bi1p = bp;
Element * cp = this->GetMatrixArray();
Element * const cp0 = cp;
Int_t ishift = 0;
const Element *barp0 = bap;
while (barp0 < bap+nba) {
const Element *brp0 = bi1p;
while (brp0 < bp+nb) {
const Element *barp = barp0;
const Element *brp = brp0;
Element cij = 0;
while (brp < brp0+ncolsb)
cij += *barp++ * *brp++;
*cp++ = cij;
brp0 += ncolsb;
}
barp0 += ncolsba;
bi1p += ncolsb;
cp += ++ishift;
}
R__ASSERT(cp == cp0+this->fNelems+ishift && barp0 == bap+nba);
cp = cp0;
for (Int_t irow = 0; irow < this->fNrows; irow++) {
const Int_t rowOff1 = irow*this->fNrows;
for (Int_t icol = 0; icol < irow; icol++) {
const Int_t rowOff2 = icol*this->fNrows;
cp[rowOff1+icol] = cp[rowOff2+irow];
}
}
#endif
if (isAllocated)
delete [] bap;
return *this;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::Similarity(const TMatrixTSym<Element> &b)
{
if (gMatrixCheck) {
R__ASSERT(this->IsValid());
R__ASSERT(b.IsValid());
if (this->fNcols != b.GetNcols() || this->fColLwb != b.GetColLwb()) {
Error("Similarity(const TMatrixTSym &)","matrices incompatible");
return *this;
}
}
#ifdef CBLAS
const Int_t nrowsb = b.GetNrows();
const Int_t ncolsa = this->GetNcols();
Element work[kWorkMax];
Bool_t isAllocated = kFALSE;
Element *abtp = work;
if (this->fNcols > kWorkMax) {
isAllocated = kTRUE;
abtp = new Element[this->fNcols];
}
const TMatrixT<Element> abt(*this,TMatrixT<Element>::kMultTranspose,b);
const Element *bp = b.GetMatrixArray();
Element *cp = this->GetMatrixArray();
if (typeid(Element) == typeid(Double_t))
cblas_dsymm (CblasRowMajor,CblasLeft,CblasUpper,this->fNrows,this->fNcols,1.0,
bp,b.GetNcols(),abtp,abt.GetNcols(),0.0,cp,this->fNcols);
else if (typeid(Element) != typeid(Float_t))
cblas_ssymm (CblasRowMajor,CblasLeft,CblasUpper,this->fNrows,this->fNcols,1.0,
bp,b.GetNcols(),abtp,abt.GetNcols(),0.0,cp,this->fNcols);
else
Error("Similarity","type %s not implemented in BLAS library",typeid(Element));
if (isAllocated)
delete [] abtp;
#else
const Int_t ncolsa = this->GetNcols();
const Int_t nb = b.GetNoElements();
const Int_t nrowsb = b.GetNrows();
const Int_t ncolsb = b.GetNcols();
const Element * const bp = b.GetMatrixArray();
Element work[kWorkMax];
Bool_t isAllocated = kFALSE;
Element *bap = work;
if (nrowsb*ncolsa > kWorkMax) {
isAllocated = kTRUE;
bap = new Element[nrowsb*ncolsa];
}
AMultB(bp,nb,ncolsb,this->fElements,this->fNelems,this->fNcols,bap);
const Int_t nba = nrowsb*ncolsa;
const Int_t ncolsba = ncolsa;
const Element * bi1p = bp;
Element * cp = this->GetMatrixArray();
Element * const cp0 = cp;
Int_t ishift = 0;
const Element *barp0 = bap;
while (barp0 < bap+nba) {
const Element *brp0 = bi1p;
while (brp0 < bp+nb) {
const Element *barp = barp0;
const Element *brp = brp0;
Element cij = 0;
while (brp < brp0+ncolsb)
cij += *barp++ * *brp++;
*cp++ = cij;
brp0 += ncolsb;
}
barp0 += ncolsba;
bi1p += ncolsb;
cp += ++ishift;
}
R__ASSERT(cp == cp0+this->fNelems+ishift && barp0 == bap+nba);
cp = cp0;
for (Int_t irow = 0; irow < this->fNrows; irow++) {
const Int_t rowOff1 = irow*this->fNrows;
for (Int_t icol = 0; icol < irow; icol++) {
const Int_t rowOff2 = icol*this->fNrows;
cp[rowOff1+icol] = cp[rowOff2+irow];
}
}
if (isAllocated)
delete [] bap;
#endif
return *this;
}
template<class Element>
Element TMatrixTSym<Element>::Similarity(const TVectorT<Element> &v) const
{
if (gMatrixCheck) {
R__ASSERT(this->IsValid());
R__ASSERT(v.IsValid());
if (this->fNcols != v.GetNrows() || this->fColLwb != v.GetLwb()) {
Error("Similarity(const TVectorT &)","vector and matrix incompatible");
return -1.;
}
}
const Element *mp = this->GetMatrixArray();
const Element *vp = v.GetMatrixArray();
Element sum1 = 0;
const Element * const vp_first = vp;
const Element * const vp_last = vp+v.GetNrows();
while (vp < vp_last) {
Element sum2 = 0;
for (const Element *sp = vp_first; sp < vp_last; )
sum2 += *mp++ * *sp++;
sum1 += sum2 * *vp++;
}
R__ASSERT(mp == this->GetMatrixArray()+this->GetNoElements());
return sum1;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::SimilarityT(const TMatrixT<Element> &b)
{
if (gMatrixCheck) {
R__ASSERT(this->IsValid());
R__ASSERT(b.IsValid());
if (this->fNrows != b.GetNrows() || this->fRowLwb != b.GetRowLwb()) {
Error("SimilarityT(const TMatrixT &)","matrices incompatible");
return *this;
}
}
const Int_t ncolsb = b.GetNcols();
const Int_t ncolsa = this->GetNcols();
Element work[kWorkMax];
Bool_t isAllocated = kFALSE;
Element *btap = work;
if (ncolsb*ncolsa > kWorkMax) {
isAllocated = kTRUE;
btap = new Element[ncolsb*ncolsa];
}
TMatrixT<Element> bta; bta.Use(ncolsb,ncolsa,btap);
bta.TMult(b,*this);
if (ncolsb != this->fNcols)
this->ResizeTo(ncolsb,ncolsb);
#ifdef CBLAS
const Element *bp = b.GetMatrixArray();
Element *cp = this->GetMatrixArray();
if (typeid(Element) == typeid(Double_t))
cblas_dgemm (CblasRowMajor,CblasNoTrans,CblasNoTrans,this->fNrows,this->fNcols,bta.GetNcols(),
1.0,btap,bta.GetNcols(),bp,b.GetNcols(),1.0,cp,this->fNcols);
else if (typeid(Element) != typeid(Float_t))
cblas_sgemm (CblasRowMajor,CblasNoTrans,CblasNoTrans,this->fNrows,this->fNcols,bta.GetNcols(),
1.0,btap,bta.GetNcols(),bp,b.GetNcols(),1.0,cp,this->fNcols);
else
Error("similarityT","type %s not implemented in BLAS library",typeid(Element));
#else
const Int_t nbta = bta.GetNoElements();
const Int_t nb = b.GetNoElements();
const Int_t ncolsbta = bta.GetNcols();
const Element * const bp = b.GetMatrixArray();
Element * cp = this->GetMatrixArray();
Element * const cp0 = cp;
Int_t ishift = 0;
const Element *btarp0 = btap;
const Element *bcp0 = bp;
while (btarp0 < btap+nbta) {
for (const Element *bcp = bcp0; bcp < bp+ncolsb; ) {
const Element *btarp = btarp0;
Element cij = 0;
while (bcp < bp+nb) {
cij += *btarp++ * *bcp;
bcp += ncolsb;
}
*cp++ = cij;
bcp -= nb-1;
}
btarp0 += ncolsbta;
bcp0++;
cp += ++ishift;
}
R__ASSERT(cp == cp0+this->fNelems+ishift && btarp0 == btap+nbta);
cp = cp0;
for (Int_t irow = 0; irow < this->fNrows; irow++) {
const Int_t rowOff1 = irow*this->fNrows;
for (Int_t icol = 0; icol < irow; icol++) {
const Int_t rowOff2 = icol*this->fNrows;
cp[rowOff1+icol] = cp[rowOff2+irow];
}
}
#endif
if (isAllocated)
delete [] btap;
return *this;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::operator=(const TMatrixTSym<Element> &source)
{
if (gMatrixCheck && !AreCompatible(*this,source)) {
Error("operator=","matrices not compatible");
return *this;
}
if (this->GetMatrixArray() != source.GetMatrixArray()) {
TObject::operator=(source);
memcpy(this->GetMatrixArray(),source.fElements,this->fNelems*sizeof(Element));
}
return *this;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::operator=(const TMatrixTSymLazy<Element> &lazy_constructor)
{
R__ASSERT(this->IsValid());
if (lazy_constructor.fRowUpb != this->GetRowUpb() ||
lazy_constructor.fRowLwb != this->GetRowLwb()) {
Error("operator=(const TMatrixTSymLazy&)", "matrix is incompatible with "
"the assigned Lazy matrix");
return *this;
}
lazy_constructor.FillIn(*this);
return *this;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::operator=(Element val)
{
R__ASSERT(this->IsValid());
Element *ep = fElements;
const Element * const ep_last = ep+this->fNelems;
while (ep < ep_last)
*ep++ = val;
return *this;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::operator+=(Element val)
{
R__ASSERT(this->IsValid());
Element *ep = fElements;
const Element * const ep_last = ep+this->fNelems;
while (ep < ep_last)
*ep++ += val;
return *this;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::operator-=(Element val)
{
R__ASSERT(this->IsValid());
Element *ep = fElements;
const Element * const ep_last = ep+this->fNelems;
while (ep < ep_last)
*ep++ -= val;
return *this;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::operator*=(Element val)
{
R__ASSERT(this->IsValid());
Element *ep = fElements;
const Element * const ep_last = ep+this->fNelems;
while (ep < ep_last)
*ep++ *= val;
return *this;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::operator+=(const TMatrixTSym<Element> &source)
{
if (gMatrixCheck && !AreCompatible(*this,source)) {
Error("operator+=","matrices not compatible");
return *this;
}
const Element *sp = source.GetMatrixArray();
Element *tp = this->GetMatrixArray();
const Element * const tp_last = tp+this->fNelems;
while (tp < tp_last)
*tp++ += *sp++;
return *this;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::operator-=(const TMatrixTSym<Element> &source)
{
if (gMatrixCheck && !AreCompatible(*this,source)) {
Error("operator-=","matrices not compatible");
return *this;
}
const Element *sp = source.GetMatrixArray();
Element *tp = this->GetMatrixArray();
const Element * const tp_last = tp+this->fNelems;
while (tp < tp_last)
*tp++ -= *sp++;
return *this;
}
template<class Element>
TMatrixTBase<Element> &TMatrixTSym<Element>::Apply(const TElementActionT<Element> &action)
{
R__ASSERT(this->IsValid());
Element val = 0;
Element *trp = this->GetMatrixArray();
Element *tcp = trp;
for (Int_t i = 0; i < this->fNrows; i++) {
trp += i;
tcp += i*this->fNcols;
for (Int_t j = i; j < this->fNcols; j++) {
action.Operation(val);
if (j > i) *tcp = val;
*trp++ = val;
tcp += this->fNcols;
}
tcp -= this->fNelems-1;
}
return *this;
}
template<class Element>
TMatrixTBase<Element> &TMatrixTSym<Element>::Apply(const TElementPosActionT<Element> &action)
{
R__ASSERT(this->IsValid());
Element val = 0;
Element *trp = this->GetMatrixArray();
Element *tcp = trp;
for (Int_t i = 0; i < this->fNrows; i++) {
action.fI = i+this->fRowLwb;
trp += i;
tcp += i*this->fNcols;
for (Int_t j = i; j < this->fNcols; j++) {
action.fJ = j+this->fColLwb;
action.Operation(val);
if (j > i) *tcp = val;
*trp++ = val;
tcp += this->fNcols;
}
tcp -= this->fNelems-1;
}
return *this;
}
template<class Element>
TMatrixTBase<Element> &TMatrixTSym<Element>::Randomize(Element alpha,Element beta,Double_t &seed)
{
if (gMatrixCheck) {
R__ASSERT(this->IsValid());
if (this->fNrows != this->fNcols || this->fRowLwb != this->fColLwb) {
Error("Randomize(Element,Element,Element &","matrix should be square");
return *this;
}
}
const Element scale = beta-alpha;
const Element shift = alpha/scale;
Element *ep = GetMatrixArray();
for (Int_t i = 0; i < this->fNrows; i++) {
const Int_t off = i*this->fNcols;
for (Int_t j = 0; j <= i; j++) {
ep[off+j] = scale*(Drand(seed)+shift);
if (i != j) {
ep[j*this->fNcols+i] = ep[off+j];
}
}
}
return *this;
}
template<class Element>
TMatrixTSym<Element> &TMatrixTSym<Element>::RandomizePD(Element alpha,Element beta,Double_t &seed)
{
if (gMatrixCheck) {
R__ASSERT(this->IsValid());
if (this->fNrows != this->fNcols || this->fRowLwb != this->fColLwb) {
Error("RandomizeSym(Element,Element,Element &","matrix should be square");
return *this;
}
}
const Element scale = beta-alpha;
const Element shift = alpha/scale;
Element *ep = GetMatrixArray();
Int_t i;
for (i = 0; i < this->fNrows; i++) {
const Int_t off = i*this->fNcols;
for (Int_t j = 0; j <= i; j++)
ep[off+j] = scale*(Drand(seed)+shift);
}
for (i = this->fNrows-1; i >= 0; i--) {
const Int_t off1 = i*this->fNcols;
for (Int_t j = i; j >= 0; j--) {
const Int_t off2 = j*this->fNcols;
ep[off1+j] *= ep[off2+j];
for (Int_t k = j-1; k >= 0; k--) {
ep[off1+j] += ep[off1+k]*ep[off2+k];
}
if (i != j)
ep[off2+i] = ep[off1+j];
}
}
return *this;
}
template<class Element>
const TMatrixT<Element> TMatrixTSym<Element>::EigenVectors(TVectorT<Element> &eigenValues) const
{
TMatrixDSym tmp = *this;
TMatrixDSymEigen eigen(tmp);
eigenValues.ResizeTo(this->fNrows);
eigenValues = eigen.GetEigenValues();
return eigen.GetEigenVectors();
}
template<class Element>
Bool_t operator==(const TMatrixTSym<Element> &m1,const TMatrixTSym<Element> &m2)
{
if (!AreCompatible(m1,m2)) return kFALSE;
return (memcmp(m1.GetMatrixArray(),m2.GetMatrixArray(),
m1.GetNoElements()*sizeof(Element)) == 0);
}
template<class Element>
TMatrixTSym<Element> operator+(const TMatrixTSym<Element> &source1,const TMatrixTSym<Element> &source2)
{
TMatrixTSym<Element> target(source1);
target += source2;
return target;
}
template<class Element>
TMatrixTSym<Element> operator+(const TMatrixTSym<Element> &source1,Element val)
{
TMatrixTSym<Element> target(source1);
target += val;
return target;
}
template<class Element>
TMatrixTSym<Element> operator+(Element val,const TMatrixTSym<Element> &source1)
{
return operator+(source1,val);
}
template<class Element>
TMatrixTSym<Element> operator-(const TMatrixTSym<Element> &source1,const TMatrixTSym<Element> &source2)
{
TMatrixTSym<Element> target(source1);
target -= source2;
return target;
}
template<class Element>
TMatrixTSym<Element> operator-(const TMatrixTSym<Element> &source1,Element val)
{
TMatrixTSym<Element> target(source1);
target -= val;
return target;
}
template<class Element>
TMatrixTSym<Element> operator-(Element val,const TMatrixTSym<Element> &source1)
{
return Element(-1.0)*operator-(source1,val);
}
template<class Element>
TMatrixTSym<Element> operator*(const TMatrixTSym<Element> &source1,Element val)
{
TMatrixTSym<Element> target(source1);
target *= val;
return target;
}
template<class Element>
TMatrixTSym<Element> operator*(Element val,const TMatrixTSym<Element> &source1)
{
return operator*(source1,val);
}
template<class Element>
TMatrixTSym<Element> operator&&(const TMatrixTSym<Element> &source1,const TMatrixTSym<Element> &source2)
{
TMatrixTSym<Element> target;
if (gMatrixCheck && !AreCompatible(source1,source2)) {
Error("operator&&(const TMatrixTSym&,const TMatrixTSym&)","matrices not compatible");
return target;
}
target.ResizeTo(source1);
const Element *sp1 = source1.GetMatrixArray();
const Element *sp2 = source2.GetMatrixArray();
Element *tp = target.GetMatrixArray();
const Element * const tp_last = tp+target.GetNoElements();
while (tp < tp_last)
*tp++ = (*sp1++ != 0.0 && *sp2++ != 0.0);
return target;
}
template<class Element>
TMatrixTSym<Element> operator||(const TMatrixTSym<Element> &source1,const TMatrixTSym<Element> &source2)
{
TMatrixTSym<Element> target;
if (gMatrixCheck && !AreCompatible(source1,source2)) {
Error("operator||(const TMatrixTSym&,const TMatrixTSym&)","matrices not compatible");
return target;
}
target.ResizeTo(source1);
const Element *sp1 = source1.GetMatrixArray();
const Element *sp2 = source2.GetMatrixArray();
Element *tp = target.GetMatrixArray();
const Element * const tp_last = tp+target.GetNoElements();
while (tp < tp_last)
*tp++ = (*sp1++ != 0.0 || *sp2++ != 0.0);
return target;
}
template<class Element>
TMatrixTSym<Element> operator>(const TMatrixTSym<Element> &source1,const TMatrixTSym<Element> &source2)
{
TMatrixTSym<Element> target;
if (gMatrixCheck && !AreCompatible(source1,source2)) {
Error("operator>(const TMatrixTSym&,const TMatrixTSym&)","matrices not compatible");
return target;
}
target.ResizeTo(source1);
const Element *sp1 = source1.GetMatrixArray();
const Element *sp2 = source2.GetMatrixArray();
Element *tp = target.GetMatrixArray();
const Element * const tp_last = tp+target.GetNoElements();
while (tp < tp_last) {
*tp++ = (*sp1) > (*sp2); sp1++; sp2++;
}
return target;
}
template<class Element>
TMatrixTSym<Element> operator>=(const TMatrixTSym<Element> &source1,const TMatrixTSym<Element> &source2)
{
TMatrixTSym<Element> target;
if (gMatrixCheck && !AreCompatible(source1,source2)) {
Error("operator>=(const TMatrixTSym&,const TMatrixTSym&)","matrices not compatible");
return target;
}
target.ResizeTo(source1);
const Element *sp1 = source1.GetMatrixArray();
const Element *sp2 = source2.GetMatrixArray();
Element *tp = target.GetMatrixArray();
const Element * const tp_last = tp+target.GetNoElements();
while (tp < tp_last) {
*tp++ = (*sp1) >= (*sp2); sp1++; sp2++;
}
return target;
}
template<class Element>
TMatrixTSym<Element> operator<=(const TMatrixTSym<Element> &source1,const TMatrixTSym<Element> &source2)
{
TMatrixTSym<Element> target;
if (gMatrixCheck && !AreCompatible(source1,source2)) {
Error("operator<=(const TMatrixTSym&,const TMatrixTSym&)","matrices not compatible");
return target;
}
target.ResizeTo(source1);
const Element *sp1 = source1.GetMatrixArray();
const Element *sp2 = source2.GetMatrixArray();
Element *tp = target.GetMatrixArray();
const Element * const tp_last = tp+target.GetNoElements();
while (tp < tp_last) {
*tp++ = (*sp1) <= (*sp2); sp1++; sp2++;
}
return target;
}
template<class Element>
TMatrixTSym<Element> operator<(const TMatrixTSym<Element> &source1,const TMatrixTSym<Element> &source2)
{
TMatrixTSym<Element> target;
if (gMatrixCheck && !AreCompatible(source1,source2)) {
Error("operator<(const TMatrixTSym&,const TMatrixTSym&)","matrices not compatible");
return target;
}
target.ResizeTo(source1);
const Element *sp1 = source1.GetMatrixArray();
const Element *sp2 = source2.GetMatrixArray();
Element *tp = target.GetMatrixArray();
const Element * const tp_last = tp+target.GetNoElements();
while (tp < tp_last) {
*tp++ = (*sp1) < (*sp2); sp1++; sp2++;
}
return target;
}
template<class Element>
TMatrixTSym<Element> &Add(TMatrixTSym<Element> &target,Element scalar,const TMatrixTSym<Element> &source)
{
if (gMatrixCheck && !AreCompatible(target,source)) {
::Error("Add","matrices not compatible");
return target;
}
const Int_t nrows = target.GetNrows();
const Int_t ncols = target.GetNcols();
const Int_t nelems = target.GetNoElements();
const Element *sp = source.GetMatrixArray();
Element *trp = target.GetMatrixArray();
Element *tcp = target.GetMatrixArray();
for (Int_t i = 0; i < nrows; i++) {
sp += i;
trp += i;
tcp += i*ncols;
for (Int_t j = i; j < ncols; j++) {
const Element tmp = scalar * *sp++;
if (j > i) *tcp += tmp;
*trp++ += tmp;
tcp += ncols;
}
tcp -= nelems-1;
}
return target;
}
template<class Element>
TMatrixTSym<Element> &ElementMult(TMatrixTSym<Element> &target,const TMatrixTSym<Element> &source)
{
if (gMatrixCheck && !AreCompatible(target,source)) {
::Error("ElementMult","matrices not compatible");
return target;
}
const Int_t nrows = target.GetNrows();
const Int_t ncols = target.GetNcols();
const Int_t nelems = target.GetNoElements();
const Element *sp = source.GetMatrixArray();
Element *trp = target.GetMatrixArray();
Element *tcp = target.GetMatrixArray();
for (Int_t i = 0; i < nrows; i++) {
sp += i;
trp += i;
tcp += i*ncols;
for (Int_t j = i; j < ncols; j++) {
if (j > i) *tcp *= *sp;
*trp++ *= *sp++;
tcp += ncols;
}
tcp -= nelems-1;
}
return target;
}
template<class Element>
TMatrixTSym<Element> &ElementDiv(TMatrixTSym<Element> &target,const TMatrixTSym<Element> &source)
{
if (gMatrixCheck && !AreCompatible(target,source)) {
::Error("ElementDiv","matrices not compatible");
return target;
}
const Int_t nrows = target.GetNrows();
const Int_t ncols = target.GetNcols();
const Int_t nelems = target.GetNoElements();
const Element *sp = source.GetMatrixArray();
Element *trp = target.GetMatrixArray();
Element *tcp = target.GetMatrixArray();
for (Int_t i = 0; i < nrows; i++) {
sp += i;
trp += i;
tcp += i*ncols;
for (Int_t j = i; j < ncols; j++) {
if (*sp != 0.0) {
if (j > i) *tcp /= *sp;
*trp++ /= *sp++;
} else {
const Int_t irow = (sp-source.GetMatrixArray())/source.GetNcols();
const Int_t icol = (sp-source.GetMatrixArray())%source.GetNcols();
Error("ElementDiv","source (%d,%d) is zero",irow,icol);
trp++;
}
tcp += ncols;
}
tcp -= nelems-1;
}
return target;
}
template<class Element>
void TMatrixTSym<Element>::Streamer(TBuffer &R__b)
{
if (R__b.IsReading()) {
UInt_t R__s, R__c;
Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
Clear();
R__b.ReadClassBuffer(TMatrixTBase<Element>::Class(),this,R__v,R__s,R__c);
fElements = new Element[this->fNelems];
Int_t i;
for (i = 0; i < this->fNrows; i++) {
R__b.ReadFastArray(fElements+i*this->fNcols+i,this->fNcols-i);
}
for (i = 0; i < this->fNrows; i++) {
for (Int_t j = 0; j < i; j++) {
fElements[i*this->fNcols+j] = fElements[j*this->fNrows+i];
}
}
if (this->fNelems <= this->kSizeMax) {
memcpy(fDataStack,fElements,this->fNelems*sizeof(Element));
delete [] fElements;
fElements = fDataStack;
}
} else {
R__b.WriteClassBuffer(TMatrixTBase<Element>::Class(),this);
for (Int_t i = 0; i < this->fNrows; i++) {
R__b.WriteFastArray(fElements+i*this->fNcols+i,this->fNcols-i);
}
}
}
#ifndef ROOT_TMatrixFSymfwd
#include "TMatrixFSymfwd.h"
#endif
template class TMatrixTSym<Float_t>;
template Bool_t operator== <Float_t>(const TMatrixFSym &source1,const TMatrixFSym &source2);
template TMatrixFSym operator+ <Float_t>(const TMatrixFSym &source1,const TMatrixFSym &source2);
template TMatrixFSym operator+ <Float_t>(const TMatrixFSym &source1, Float_t val);
template TMatrixFSym operator+ <Float_t>( Float_t val ,const TMatrixFSym &source2);
template TMatrixFSym operator- <Float_t>(const TMatrixFSym &source1,const TMatrixFSym &source2);
template TMatrixFSym operator- <Float_t>(const TMatrixFSym &source1, Float_t val);
template TMatrixFSym operator- <Float_t>( Float_t val ,const TMatrixFSym &source2);
template TMatrixFSym operator* <Float_t>(const TMatrixFSym &source, Float_t val );
template TMatrixFSym operator* <Float_t>( Float_t val, const TMatrixFSym &source );
template TMatrixFSym operator&& <Float_t>(const TMatrixFSym &source1,const TMatrixFSym &source2);
template TMatrixFSym operator|| <Float_t>(const TMatrixFSym &source1,const TMatrixFSym &source2);
template TMatrixFSym operator> <Float_t>(const TMatrixFSym &source1,const TMatrixFSym &source2);
template TMatrixFSym operator>= <Float_t>(const TMatrixFSym &source1,const TMatrixFSym &source2);
template TMatrixFSym operator<= <Float_t>(const TMatrixFSym &source1,const TMatrixFSym &source2);
template TMatrixFSym operator< <Float_t>(const TMatrixFSym &source1,const TMatrixFSym &source2);
template TMatrixFSym &Add <Float_t>(TMatrixFSym &target, Float_t scalar,const TMatrixFSym &source);
template TMatrixFSym &ElementMult<Float_t>(TMatrixFSym &target,const TMatrixFSym &source);
template TMatrixFSym &ElementDiv <Float_t>(TMatrixFSym &target,const TMatrixFSym &source);
#ifndef ROOT_TMatrixDSymfwd
#include "TMatrixDSymfwd.h"
#endif
template class TMatrixTSym<Double_t>;
template Bool_t operator== <Double_t>(const TMatrixDSym &source1,const TMatrixDSym &source2);
template TMatrixDSym operator+ <Double_t>(const TMatrixDSym &source1,const TMatrixDSym &source2);
template TMatrixDSym operator+ <Double_t>(const TMatrixDSym &source1, Double_t val);
template TMatrixDSym operator+ <Double_t>( Double_t val ,const TMatrixDSym &source2);
template TMatrixDSym operator- <Double_t>(const TMatrixDSym &source1,const TMatrixDSym &source2);
template TMatrixDSym operator- <Double_t>(const TMatrixDSym &source1, Double_t val);
template TMatrixDSym operator- <Double_t>( Double_t val ,const TMatrixDSym &source2);
template TMatrixDSym operator* <Double_t>(const TMatrixDSym &source, Double_t val );
template TMatrixDSym operator* <Double_t>( Double_t val, const TMatrixDSym &source );
template TMatrixDSym operator&& <Double_t>(const TMatrixDSym &source1,const TMatrixDSym &source2);
template TMatrixDSym operator|| <Double_t>(const TMatrixDSym &source1,const TMatrixDSym &source2);
template TMatrixDSym operator> <Double_t>(const TMatrixDSym &source1,const TMatrixDSym &source2);
template TMatrixDSym operator>= <Double_t>(const TMatrixDSym &source1,const TMatrixDSym &source2);
template TMatrixDSym operator<= <Double_t>(const TMatrixDSym &source1,const TMatrixDSym &source2);
template TMatrixDSym operator< <Double_t>(const TMatrixDSym &source1,const TMatrixDSym &source2);
template TMatrixDSym &Add <Double_t>(TMatrixDSym &target, Double_t scalar,const TMatrixDSym &source);
template TMatrixDSym &ElementMult<Double_t>(TMatrixDSym &target,const TMatrixDSym &source);
template TMatrixDSym &ElementDiv <Double_t>(TMatrixDSym &target,const TMatrixDSym &source);