From $ROOTSYS/tutorials/fit/NumericalMinimization.C

// Example on how to use the new Minimizer class in ROOT
//  Show usage with all the possible minimizers.
// Minimize the Rosenbrock function (a 2D -function)
// This example is described also in
// http://root.cern.ch/drupal/content/numerical-minimization#multidim_minim
// input : minimizer name + algorithm name
// randomSeed: = <0 : fixed value: 0 random with seed 0; >0 random with given seed
//
//Author: L. Moneta Dec 2010

#include "Math/Minimizer.h"
#include "Math/Factory.h"
#include "Math/Functor.h"
#include "TRandom2.h"
#include "TError.h"
#include <iostream>

double RosenBrock(const double *xx )
{
  const Double_t x = xx[0];
  const Double_t y = xx[1];
  const Double_t tmp1 = y-x*x;
  const Double_t tmp2 = 1-x;
  return 100*tmp1*tmp1+tmp2*tmp2;
}

int NumericalMinimization(const char * minName = "Minuit2",
                          const char *algoName = "" ,
                          int randomSeed = -1)
{
   // create minimizer giving a name and a name (optionally) for the specific
   // algorithm
   // possible choices are:
   //     minName                  algoName
   // Minuit /Minuit2             Migrad, Simplex,Combined,Scan  (default is Migrad)
   //  Minuit2                     Fumili2
   //  Fumili
   //  GSLMultiMin                ConjugateFR, ConjugatePR, BFGS,
   //                              BFGS2, SteepestDescent
   //  GSLMultiFit
   //   GSLSimAn
   //   Genetic
   ROOT::Math::Minimizer* min =
      ROOT::Math::Factory::CreateMinimizer(minName, algoName);

   // set tolerance , etc...
   min->SetMaxFunctionCalls(1000000); // for Minuit/Minuit2
   min->SetMaxIterations(10000);  // for GSL
   min->SetTolerance(0.001);
   min->SetPrintLevel(1);

   // create funciton wrapper for minmizer
   // a IMultiGenFunction type
   ROOT::Math::Functor f(&RosenBrock,2);
   double step[2] = {0.01,0.01};
   // starting point

   double variable[2] = { -1.,1.2};
   if (randomSeed >= 0) {
      TRandom2 r(randomSeed);
      variable[0] = r.Uniform(-20,20);
      variable[1] = r.Uniform(-20,20);
   }

   min->SetFunction(f);

   // Set the free variables to be minimized!
   min->SetVariable(0,"x",variable[0], step[0]);
   min->SetVariable(1,"y",variable[1], step[1]);

   // do the minimization
   min->Minimize();

   const double *xs = min->X();
   std::cout << "Minimum: f(" << xs[0] << "," << xs[1] << "): "
             << min->MinValue()  << std::endl;

   // expected minimum is 0
   if ( min->MinValue()  < 1.E-4  && f(xs) < 1.E-4)
      std::cout << "Minimizer " << minName << " - " << algoName
                << "   converged to the right minimum" << std::endl;
   else {
      std::cout << "Minimizer " << minName << " - " << algoName
                << "   failed to converge !!!" << std::endl;
      Error("NumericalMinimization","fail to converge");
   }

   return 0;
}
 NumericalMinimization.C:1
 NumericalMinimization.C:2
 NumericalMinimization.C:3
 NumericalMinimization.C:4
 NumericalMinimization.C:5
 NumericalMinimization.C:6
 NumericalMinimization.C:7
 NumericalMinimization.C:8
 NumericalMinimization.C:9
 NumericalMinimization.C:10
 NumericalMinimization.C:11
 NumericalMinimization.C:12
 NumericalMinimization.C:13
 NumericalMinimization.C:14
 NumericalMinimization.C:15
 NumericalMinimization.C:16
 NumericalMinimization.C:17
 NumericalMinimization.C:18
 NumericalMinimization.C:19
 NumericalMinimization.C:20
 NumericalMinimization.C:21
 NumericalMinimization.C:22
 NumericalMinimization.C:23
 NumericalMinimization.C:24
 NumericalMinimization.C:25
 NumericalMinimization.C:26
 NumericalMinimization.C:27
 NumericalMinimization.C:28
 NumericalMinimization.C:29
 NumericalMinimization.C:30
 NumericalMinimization.C:31
 NumericalMinimization.C:32
 NumericalMinimization.C:33
 NumericalMinimization.C:34
 NumericalMinimization.C:35
 NumericalMinimization.C:36
 NumericalMinimization.C:37
 NumericalMinimization.C:38
 NumericalMinimization.C:39
 NumericalMinimization.C:40
 NumericalMinimization.C:41
 NumericalMinimization.C:42
 NumericalMinimization.C:43
 NumericalMinimization.C:44
 NumericalMinimization.C:45
 NumericalMinimization.C:46
 NumericalMinimization.C:47
 NumericalMinimization.C:48
 NumericalMinimization.C:49
 NumericalMinimization.C:50
 NumericalMinimization.C:51
 NumericalMinimization.C:52
 NumericalMinimization.C:53
 NumericalMinimization.C:54
 NumericalMinimization.C:55
 NumericalMinimization.C:56
 NumericalMinimization.C:57
 NumericalMinimization.C:58
 NumericalMinimization.C:59
 NumericalMinimization.C:60
 NumericalMinimization.C:61
 NumericalMinimization.C:62
 NumericalMinimization.C:63
 NumericalMinimization.C:64
 NumericalMinimization.C:65
 NumericalMinimization.C:66
 NumericalMinimization.C:67
 NumericalMinimization.C:68
 NumericalMinimization.C:69
 NumericalMinimization.C:70
 NumericalMinimization.C:71
 NumericalMinimization.C:72
 NumericalMinimization.C:73
 NumericalMinimization.C:74
 NumericalMinimization.C:75
 NumericalMinimization.C:76
 NumericalMinimization.C:77
 NumericalMinimization.C:78
 NumericalMinimization.C:79
 NumericalMinimization.C:80
 NumericalMinimization.C:81
 NumericalMinimization.C:82
 NumericalMinimization.C:83
 NumericalMinimization.C:84
 NumericalMinimization.C:85
 NumericalMinimization.C:86
 NumericalMinimization.C:87
 NumericalMinimization.C:88
 NumericalMinimization.C:89
 NumericalMinimization.C:90