Logo ROOT   6.07/09
Reference Guide
TMVA::DNN::TReference< Real_t > Member List

This is the complete list of members for TMVA::DNN::TReference< Real_t >, including all inherited members.

AddL1RegularizationGradients(TMatrixT< Real_t > &A, const TMatrixT< Real_t > &W, Real_t weightDecay)TMVA::DNN::TReference< Real_t >static
AddL2RegularizationGradients(TMatrixT< Real_t > &A, const TMatrixT< Real_t > &W, Real_t weightDecay)TMVA::DNN::TReference< Real_t >static
AddRowWise(TMatrixT< Scalar_t > &output, const TMatrixT< Scalar_t > &biases)TMVA::DNN::TReference< Real_t >static
Backward(TMatrixT< Scalar_t > &activationGradientsBackward, TMatrixT< Scalar_t > &weightGradients, TMatrixT< Scalar_t > &biasGradients, TMatrixT< Scalar_t > &df, const TMatrixT< Scalar_t > &activationGradients, const TMatrixT< Scalar_t > &weights, const TMatrixT< Scalar_t > &activationBackward)TMVA::DNN::TReference< Real_t >static
Copy(TMatrixT< Scalar_t > &A, const TMatrixT< Scalar_t > &B)TMVA::DNN::TReference< Real_t >static
CrossEntropy(const TMatrixT< Real_t > &Y, const TMatrixT< Real_t > &output)TMVA::DNN::TReference< Real_t >static
CrossEntropyGradients(TMatrixT< Real_t > &dY, const TMatrixT< Real_t > &Y, const TMatrixT< Real_t > &output)TMVA::DNN::TReference< Real_t >static
Dropout(TMatrixT< Real_t > &A, Real_t dropoutProbability)TMVA::DNN::TReference< Real_t >static
Gauss(TMatrixT< Real_t > &B)TMVA::DNN::TReference< Real_t >inlinestatic
GaussDerivative(TMatrixT< Real_t > &B, const TMatrixT< Real_t > &A)TMVA::DNN::TReference< Real_t >inlinestatic
Identity(TMatrixT< Real_t > &B)TMVA::DNN::TReference< Real_t >static
IdentityDerivative(TMatrixT< Real_t > &B, const TMatrixT< Real_t > &A)TMVA::DNN::TReference< Real_t >static
InitializeGauss(TMatrixT< Real_t > &A)TMVA::DNN::TReference< Real_t >static
InitializeIdentity(TMatrixT< Real_t > &A)TMVA::DNN::TReference< Real_t >static
InitializeUniform(TMatrixT< Real_t > &A)TMVA::DNN::TReference< Real_t >static
InitializeZero(TMatrixT< Real_t > &A)TMVA::DNN::TReference< Real_t >static
L1Regularization(const TMatrixT< Real_t > &W)TMVA::DNN::TReference< Real_t >static
L2Regularization(const TMatrixT< Real_t > &W)TMVA::DNN::TReference< Real_t >static
Matrix_t typedefTMVA::DNN::TReference< Real_t >
MeanSquaredError(const TMatrixT< Real_t > &Y, const TMatrixT< Real_t > &output)TMVA::DNN::TReference< Real_t >static
MeanSquaredErrorGradients(TMatrixT< Real_t > &dY, const TMatrixT< Real_t > &Y, const TMatrixT< Real_t > &output)TMVA::DNN::TReference< Real_t >static
MultiplyTranspose(TMatrixT< Scalar_t > &output, const TMatrixT< Scalar_t > &input, const TMatrixT< Scalar_t > &weights)TMVA::DNN::TReference< Real_t >static
Relu(TMatrixT< Real_t > &B)TMVA::DNN::TReference< Real_t >static
ReluDerivative(TMatrixT< Real_t > &B, const TMatrixT< Real_t > &A)TMVA::DNN::TReference< Real_t >inlinestatic
Scalar_t typedefTMVA::DNN::TReference< Real_t >
ScaleAdd(TMatrixT< Scalar_t > &A, const TMatrixT< Scalar_t > &B, Scalar_t beta=1.0)TMVA::DNN::TReference< Real_t >static
Sigmoid(TMatrixT< Real_t > &B)TMVA::DNN::TReference< Real_t >static
Sigmoid(TMatrixT< Real_t > &YHat, const TMatrixT< Real_t > &)TMVA::DNN::TReference< Real_t >static
SigmoidDerivative(TMatrixT< Real_t > &B, const TMatrixT< Real_t > &A)TMVA::DNN::TReference< Real_t >inlinestatic
SoftSign(TMatrixT< Real_t > &B)TMVA::DNN::TReference< Real_t >inlinestatic
SoftSignDerivative(TMatrixT< Real_t > &B, const TMatrixT< Real_t > &A)TMVA::DNN::TReference< Real_t >inlinestatic
SymmetricRelu(TMatrixT< Real_t > &B)TMVA::DNN::TReference< Real_t >inlinestatic
SymmetricReluDerivative(TMatrixT< Real_t > &B, const TMatrixT< Real_t > &A)TMVA::DNN::TReference< Real_t >inlinestatic
Tanh(TMatrixT< Real_t > &B)TMVA::DNN::TReference< Real_t >inlinestatic
TanhDerivative(TMatrixT< Real_t > &B, const TMatrixT< Real_t > &A)TMVA::DNN::TReference< Real_t >inlinestatic