![]() |
ROOT 6.07/09 Reference Guide |
This is the complete list of members for TMVA::DNN::TReference< Real_t >, including all inherited members.
AddL1RegularizationGradients(TMatrixT< Real_t > &A, const TMatrixT< Real_t > &W, Real_t weightDecay) | TMVA::DNN::TReference< Real_t > | static |
AddL2RegularizationGradients(TMatrixT< Real_t > &A, const TMatrixT< Real_t > &W, Real_t weightDecay) | TMVA::DNN::TReference< Real_t > | static |
AddRowWise(TMatrixT< Scalar_t > &output, const TMatrixT< Scalar_t > &biases) | TMVA::DNN::TReference< Real_t > | static |
Backward(TMatrixT< Scalar_t > &activationGradientsBackward, TMatrixT< Scalar_t > &weightGradients, TMatrixT< Scalar_t > &biasGradients, TMatrixT< Scalar_t > &df, const TMatrixT< Scalar_t > &activationGradients, const TMatrixT< Scalar_t > &weights, const TMatrixT< Scalar_t > &activationBackward) | TMVA::DNN::TReference< Real_t > | static |
Copy(TMatrixT< Scalar_t > &A, const TMatrixT< Scalar_t > &B) | TMVA::DNN::TReference< Real_t > | static |
CrossEntropy(const TMatrixT< Real_t > &Y, const TMatrixT< Real_t > &output) | TMVA::DNN::TReference< Real_t > | static |
CrossEntropyGradients(TMatrixT< Real_t > &dY, const TMatrixT< Real_t > &Y, const TMatrixT< Real_t > &output) | TMVA::DNN::TReference< Real_t > | static |
Dropout(TMatrixT< Real_t > &A, Real_t dropoutProbability) | TMVA::DNN::TReference< Real_t > | static |
Gauss(TMatrixT< Real_t > &B) | TMVA::DNN::TReference< Real_t > | inlinestatic |
GaussDerivative(TMatrixT< Real_t > &B, const TMatrixT< Real_t > &A) | TMVA::DNN::TReference< Real_t > | inlinestatic |
Identity(TMatrixT< Real_t > &B) | TMVA::DNN::TReference< Real_t > | static |
IdentityDerivative(TMatrixT< Real_t > &B, const TMatrixT< Real_t > &A) | TMVA::DNN::TReference< Real_t > | static |
InitializeGauss(TMatrixT< Real_t > &A) | TMVA::DNN::TReference< Real_t > | static |
InitializeIdentity(TMatrixT< Real_t > &A) | TMVA::DNN::TReference< Real_t > | static |
InitializeUniform(TMatrixT< Real_t > &A) | TMVA::DNN::TReference< Real_t > | static |
InitializeZero(TMatrixT< Real_t > &A) | TMVA::DNN::TReference< Real_t > | static |
L1Regularization(const TMatrixT< Real_t > &W) | TMVA::DNN::TReference< Real_t > | static |
L2Regularization(const TMatrixT< Real_t > &W) | TMVA::DNN::TReference< Real_t > | static |
Matrix_t typedef | TMVA::DNN::TReference< Real_t > | |
MeanSquaredError(const TMatrixT< Real_t > &Y, const TMatrixT< Real_t > &output) | TMVA::DNN::TReference< Real_t > | static |
MeanSquaredErrorGradients(TMatrixT< Real_t > &dY, const TMatrixT< Real_t > &Y, const TMatrixT< Real_t > &output) | TMVA::DNN::TReference< Real_t > | static |
MultiplyTranspose(TMatrixT< Scalar_t > &output, const TMatrixT< Scalar_t > &input, const TMatrixT< Scalar_t > &weights) | TMVA::DNN::TReference< Real_t > | static |
Relu(TMatrixT< Real_t > &B) | TMVA::DNN::TReference< Real_t > | static |
ReluDerivative(TMatrixT< Real_t > &B, const TMatrixT< Real_t > &A) | TMVA::DNN::TReference< Real_t > | inlinestatic |
Scalar_t typedef | TMVA::DNN::TReference< Real_t > | |
ScaleAdd(TMatrixT< Scalar_t > &A, const TMatrixT< Scalar_t > &B, Scalar_t beta=1.0) | TMVA::DNN::TReference< Real_t > | static |
Sigmoid(TMatrixT< Real_t > &B) | TMVA::DNN::TReference< Real_t > | static |
Sigmoid(TMatrixT< Real_t > &YHat, const TMatrixT< Real_t > &) | TMVA::DNN::TReference< Real_t > | static |
SigmoidDerivative(TMatrixT< Real_t > &B, const TMatrixT< Real_t > &A) | TMVA::DNN::TReference< Real_t > | inlinestatic |
SoftSign(TMatrixT< Real_t > &B) | TMVA::DNN::TReference< Real_t > | inlinestatic |
SoftSignDerivative(TMatrixT< Real_t > &B, const TMatrixT< Real_t > &A) | TMVA::DNN::TReference< Real_t > | inlinestatic |
SymmetricRelu(TMatrixT< Real_t > &B) | TMVA::DNN::TReference< Real_t > | inlinestatic |
SymmetricReluDerivative(TMatrixT< Real_t > &B, const TMatrixT< Real_t > &A) | TMVA::DNN::TReference< Real_t > | inlinestatic |
Tanh(TMatrixT< Real_t > &B) | TMVA::DNN::TReference< Real_t > | inlinestatic |
TanhDerivative(TMatrixT< Real_t > &B, const TMatrixT< Real_t > &A) | TMVA::DNN::TReference< Real_t > | inlinestatic |