Hi Hajime, Thanks very much for your correction when using the weights. iIt clearly improves the fit. It is now in CVS. Rene Brun Hajime Nanjyo wrote: > > Dear ROOTers, > > I found a bug in the function TreeUnbinnedFitLikelihood in TTreePlayer.cxx, > which was related to a bug in TTree::UnbinnedFit. > > In the function TreeUnbinnedFitLikelihood, event weights were treated as > follows. > prob = fitfunc->EvalPar(x,par) * weight[i]/sum; > > I think it should be > prob = TMath::Power(fitfunc->EvalPar(x,par),weight[i]/sum). > > So I propose to change the original code, > > prob = fitfunc->EvalPar(x,par) * weight[i]/sum; > if(prob > 0) logL += TMath::Log(prob); > else logL += logEpsilon; > > to > > prob = fitfunc->EvalPar(x,par); > if(prob > 0) logL += TMath::Log(prob) * weight[i]/sum; > else logL += logEpsilon * weight[i]/sum; > . > > I show a small sample, "test.C" to indicate the problem below. > > It can be compiled and executed as follows. > g++ -o test `root-config --cflags` `root-config --libs` -lMinuit test.C > ./test > > In this code, 20000 events with weights are generated and fitted with two ways. > 1. Fill a histogram with the weights and fit it. > 2. TTree::UnbinnedFit with weights. > > The results should be same but not the same currently. > I already checked that the fix of the TreeUnbinnedFitLikelihood > remedy the problem. > > The ROOT under /afs/cern.ch/sw/root/v4.00.08/rh73_gcc32/root was used > with gcc version 3.2 in Red Hat Linux release 7.3 (Valhalla) > > Could you treat the problem please. > > Best Regards, > Hajime > > test.C > ////////////////////////////////////////////////////////////// > #include <iostream> > #include <cstdio> > #include "TROOT.h" > #include "TApplication.h" > #include "TFile.h" > #include "TTree.h" > #include "TCanvas.h" > #include "TF1.h" > #include "TH1.h" > > int main(int argc,char** argv) > { > TApplication theApp("App", &argc, argv); > gApplication->Init(); > > //--------------------------------- > // 1.) generate n0 events following 1+x^2+8/3*a0*x with weight w0. > // 2.) generate n1 events following 1+x^2+8/3*a1*x with weight w1. > // 3.) fill (n0+n1) events in TTree tr0 in TFile test.root. > // 4.) Fill values to the TH1D his with weight. > // 5.) Fit the histogram with [0]*(1+x^2+8/3*[1]*x) > // 6.) Performe UnbinnedFit with p.d.f of 1+x^2+8/3*[0]*x > //--------------------------------- > > int n0=10000; > int n1=10000; > > double a0=0.3; > double a1=0.6; > double w0=0.4; > double w1=0.8; > //--------------------------------- > > > TFile tf("test.root","RECREATE"); > TF1 f0("f0","1+x*x+8./3.*[0]*x",-1,1); > f0.SetParameter(0,a0); > f0.SetNpx(1000); > TF1 f1("f1","1+x*x+8./3.*[0]*x",-1,1); > f1.SetParameter(0,a1); > f1.SetNpx(1000); > > Double_t value, weight; > > TTree tr0("tr0","tr0"); > tr0.Branch("value",&value,"value/D"); > tr0.Branch("weight",&weight,"weight/D"); > > for(int i=0;i<n0;i++) { > value=f0.GetRandom(); > weight=w0; > tr0.Fill(); > } > for(int i=0;i<n1;i++) { > value=f1.GetRandom(); > weight=w1; > tr0.Fill(); > } > tr0.Write(); > tf.Close(); > > //--------------------------------- > > TFile tfi("test.root"); > TTree* tr; > tr = (TTree*)tfi.Get("tr0"); > > TF1 fun("fun","[0]*(1+x*x+8./3.*[1]*x)",-1,1); > > TH1D his("his","his",40,-1,1); > tr->Draw("value>>his","weight"); > his.Fit("fun","","",-1,1); > Double_t A0= fun.GetParameter(1); > //his.Draw("E"); > //gPad->Modified(); > //gPad->Update(); > //std::cout << "Hit Return" << std::endl; > //std::getchar(); > //--------------------------------- > > TF1 func("func","1+x*x+8./3.*[0]*x",-1,1); > tr->UnbinnedFit("func","value","weight","VEM"); > Double_t A1= func.GetParameter(0); > > tfi.Close(); > > std::cout << A0 << "\t" << A1 << std::endl; > return 0; > } > //////////////////////////////////////////////////////////////
This archive was generated by hypermail 2b29 : Sun Jan 02 2005 - 05:50:09 MET