Hi Philip,
I suggest you read the HOWTOs
http://root.cern.ch/root/HowtoFit.html
You will find below an example of macro doing something
somehow similar to what you want/
You can call Minuit commands (eg to follow your example)
gMinuit->Command("FIX 2 3");
gMinuit->Command("MINi");
gMinuit->Command("IMProve");
// example of macro fitting background + signal
// -STEP 1: Generates theoretical function
// -STEP 2: Generates an histogram by sampling the function
// -STEP 3: estimates background parameters
// -STEP 4: estimates signal parameters
// -STEP 5: Combined fit of background + signal
//
Double_t kTH = -0.5;
Double_t Background(Double_t *x, Double_t *par)
// The background function
{
Double_t arg = 0;
if (par[2]) arg = (x[0] - par[1])/par[2];
Double_t val = par[0]*TMath::Exp(kTH*arg*arg)*x[0]*x[0];
return val;
}
Double_t Signal(Double_t *x, Double_t *par)
// The signal function: a gaussian
{
Double_t arg = 0;
if (par[2]) arg = (x[0] - par[1])/par[2];
Double_t sig = par[0]*TMath::Exp(-0.5*arg*arg);
return sig;
}
Double_t Total(Double_t *x, Double_t *par)
// Combined background + signal
{
Double_t tot = Background(x,par) + Signal(x,&par[3]);
return tot;
}
void backsig()
{
// the control function
//STEP 1: Generates theoretical function
Int_t npar = 6;
Double_t params[6] = {100,3,1,350,6,0.5};
TF1 *theory = new TF1("theory",Total,0,10,npar);
theory->SetParameters(params);
//STEP 2: Generates an histogram by sampling the theory function
TH1F *Data = new TH1F("Data","Data sampled from theory",100,0,10);
Data->FillRandom("theory",10000);
//STEP 3: Estimates background parameters using a gaussian
Data->Fit("gaus","q0");
//STEP 4: Subtract estimated background to original data
// Creates a temporary histogram and fit a gaussian
TH1F *htemp = (TH1F*)Data->Clone();
htemp->Reset();
TF1 *eback = Data->GetFunction("gaus");
for (Int_t bin=1;bin<=100;bin++) {
Float_t x = Data->GetBinCenter(bin);
Double_t fval = eback->Eval(x);
Double_t diff = TMath::Abs(fval - Data->GetBinContent(bin));
htemp->Fill(x,diff);
}
htemp->Fit("gaus","q0");
TF1 *esig = htemp->GetFunction("gaus");
//STEP 5: Fit background + signal
eback->GetParameters(¶ms[0]);
esig->GetParameters(¶ms[3]);
Data->Fit("theory");
}
Rene Brun
On Wed, 10 Nov 1999, Philip M Borawski wrote:
> Please excuse my newbiness here, but I have some very basic questions on
> fitting signal plus background interactivley.
>
> First question, is there a way to set parameters to predefined functions
> (gaus for instance)?
>
> Next, is there a way to interactivley optimize the fit of this 'first
> guess'?
>
> This is motivated by common fitting methods in PAW. For
> instance to fit signal+background in PAW one would (for example) do
> somthing like:
>
> ve/cr p(7) r 120 1.860 .015 1 1 1 1
> h/fit 222 g+p3 m 7 p
>
> and then inside minuit
>
> fix 2,3
> mini
> impre
>
> Is there an anolog to this method in ROOT?
>
> Any examples or comments would be greatly appreciated.
>
> Thank you in advance
>
>
> Philip Borawski
> University of Texas at Dallas
> SLAC/BaBar Collaboration
>
>
>
>
>
This archive was generated by hypermail 2b29 : Tue Jan 04 2000 - 00:43:42 MET