Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
MethodDL.h
Go to the documentation of this file.
1// @(#)root/tmva/tmva/dnn:$Id$
2// Author: Vladimir Ilievski, Saurav Shekhar
3
4/**********************************************************************************
5 * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6 * Package: TMVA *
7 * Class : MethodDL *
8 * *
9 * *
10 * Description: *
11 * Deep Neural Network Method *
12 * *
13 * Authors (alphabetical): *
14 * Vladimir Ilievski <ilievski.vladimir@live.com> - CERN, Switzerland *
15 * Saurav Shekhar <sauravshekhar01@gmail.com> - ETH Zurich, Switzerland *
16 * *
17 * Copyright (c) 2005-2015: *
18 * CERN, Switzerland *
19 * U. of Victoria, Canada *
20 * MPI-K Heidelberg, Germany *
21 * U. of Bonn, Germany *
22 * *
23 * Redistribution and use in source and binary forms, with or without *
24 * modification, are permitted according to the terms listed in LICENSE *
25 * (see tmva/doc/LICENSE) *
26 **********************************************************************************/
27
28#ifndef ROOT_TMVA_MethodDL
29#define ROOT_TMVA_MethodDL
30
31//////////////////////////////////////////////////////////////////////////
32// //
33// MethodDL //
34// //
35// Method class for all Deep Learning Networks //
36// //
37//////////////////////////////////////////////////////////////////////////
38
39#include "TString.h"
40
41#include "TMVA/MethodBase.h"
42#include "TMVA/Types.h"
43
45
46//#ifdef R__HAS_TMVACPU
48//#endif
49
50#if 0
51#ifdef R__HAS_TMVAGPU
53#ifdef R__HAS_CUDNN
55#endif
56#endif
57#endif
58
59#include "TMVA/DNN/Functions.h"
60#include "TMVA/DNN/DeepNet.h"
61
62#include <vector>
63#include <map>
64
65#ifdef R__HAS_TMVAGPU
66//#define USE_GPU_INFERENCE
67#endif
68
69namespace TMVA {
70
71/*! All of the options that can be specified in the training string */
87
88
89class MethodDL : public MethodBase {
90
91private:
92 // Key-Value vector type, contining the values for the training options
93 using KeyValueVector_t = std::vector<std::map<TString, TString>>;
94
95// #ifdef R__HAS_TMVAGPU
96// #ifdef R__HAS_CUDNN
97// using ArchitectureImpl_t = TMVA::DNN::TCudnn<Float_t>;
98// #else
99// using ArchitectureImpl_t = TMVA::DNN::TCuda<Float_t>;
100// #endif
101// #else
102// do not use GPU architecture for evaluation. It is too slow for batch size=1
104// #endif
105
111
112 /*! The option handling methods */
113 void DeclareOptions();
114 void ProcessOptions();
115
116 void Init();
117
118 // Function to parse the layout of the input
119 void ParseInputLayout();
120 void ParseBatchLayout();
121
122 /*! After calling the ProcesOptions(), all of the options are parsed,
123 * so using the parsed options, and given the architecture and the
124 * type of the layers, we build the Deep Network passed as
125 * a reference in the function. */
126 template <typename Architecture_t, typename Layer_t>
129
130 template <typename Architecture_t, typename Layer_t>
133
134 template <typename Architecture_t, typename Layer_t>
137
138 template <typename Architecture_t, typename Layer_t>
141 TString delim);
142
143 template <typename Architecture_t, typename Layer_t>
146 TString delim);
147
148 template <typename Architecture_t, typename Layer_t>
151 TString delim);
152
154 template <typename Architecture_t, typename Layer_t>
157
158
159 /// train of deep neural network using the defined architecture
160 template <typename Architecture_t>
161 void TrainDeepNet();
162
163 /// perform prediction of the deep neural network
164 /// using batches (called by GetMvaValues)
165 template <typename Architecture_t>
166 std::vector<Double_t> PredictDeepNet(Long64_t firstEvt, Long64_t lastEvt, size_t batchSize, Bool_t logProgress);
167
168 /// Get the input event tensor for evaluation
169 /// Internal function to fill the fXInput tensor with the correct shape from TMVA current Event class
170 void FillInputTensor();
171
172 /// parce the validation string and return the number of event data used for validation
174
175 // cudnn implementation needs this format
176 /** Contains the batch size (no. of images in the batch), input depth (no. channels)
177 * and further input dimensions of the data (image height, width ...)*/
178 std::vector<size_t> fInputShape;
179
180 // The size of the batch, i.e. the number of images that are contained in the batch, is either set to be the depth
181 // or the height of the batch
182 size_t fBatchDepth; ///< The depth of the batch used to train the deep net.
183 size_t fBatchHeight; ///< The height of the batch used to train the deep net.
184 size_t fBatchWidth; ///< The width of the batch used to train the deep net.
185
186 size_t fRandomSeed; ///<The random seed used to initialize the weights and shuffling batches (default is zero)
187
188 DNN::EInitialization fWeightInitialization; ///< The initialization method
189 DNN::EOutputFunction fOutputFunction; ///< The output function for making the predictions
190 DNN::ELossFunction fLossFunction; ///< The loss function
191
192 TString fInputLayoutString; ///< The string defining the layout of the input
193 TString fBatchLayoutString; ///< The string defining the layout of the batch
194 TString fLayoutString; ///< The string defining the layout of the deep net
195 TString fErrorStrategy; ///< The string defining the error strategy for training
196 TString fTrainingStrategyString; ///< The string defining the training strategy
197 TString fWeightInitializationString; ///< The string defining the weight initialization method
198 TString fArchitectureString; ///< The string defining the architecture: CPU or GPU
199 TString fNumValidationString; ///< The string defining the number (or percentage) of training data used for validation
201 bool fBuildNet; ///< Flag to control whether to build fNet, the stored network used for the evaluation
202
203 KeyValueVector_t fSettings; ///< Map for the training strategy
204 std::vector<TTrainingSettings> fTrainingSettings; ///< The vector defining each training strategy
205
206 TensorImpl_t fXInput; // input tensor used to evaluate fNet
207 HostBufferImpl_t fXInputBuffer; // input host buffer corresponding to X (needed for GPU implementation)
208 std::unique_ptr<MatrixImpl_t> fYHat; // output prediction matrix of fNet
209 std::unique_ptr<DeepNetImpl_t> fNet;
210
211
213
214protected:
215 // provide a help message
216 void GetHelpMessage() const;
217
218 virtual std::vector<Double_t> GetMvaValues(Long64_t firstEvt, Long64_t lastEvt, Bool_t logProgress);
219
220
221public:
222 /*! Constructor */
223 MethodDL(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption);
224
225 /*! Constructor */
227
228 /*! Virtual Destructor */
229 virtual ~MethodDL();
230
231 /*! Function for parsing the training settings, provided as a string
232 * in a key-value form. */
234
235 /*! Check the type of analysis the deep learning network can do */
237
238 /*! Methods for training the deep learning network */
239 void Train();
240
241 Double_t GetMvaValue(Double_t *err = nullptr, Double_t *errUpper = nullptr);
242 virtual const std::vector<Float_t>& GetRegressionValues();
243 virtual const std::vector<Float_t>& GetMulticlassValues();
244
245 /*! Methods for writing and reading weights */
247 void AddWeightsXMLTo(void *parent) const;
248 void ReadWeightsFromXML(void *wghtnode);
249 void ReadWeightsFromStream(std::istream &);
250
251 /* Create ranking */
252 const Ranking *CreateRanking();
253
254 /* Getters */
255 size_t GetInputDepth() const { return fInputShape[1]; } //< no. of channels for an image
256 size_t GetInputHeight() const { return fInputShape[2]; }
257 size_t GetInputWidth() const { return fInputShape[3]; }
258 size_t GetInputDim() const { return fInputShape.size() - 2; }
259 std::vector<size_t> GetInputShape() const { return fInputShape; }
260
261 size_t GetBatchSize() const { return fInputShape[0]; }
262 size_t GetBatchDepth() const { return fBatchDepth; }
263 size_t GetBatchHeight() const { return fBatchHeight; }
264 size_t GetBatchWidth() const { return fBatchWidth; }
265
266 const DeepNetImpl_t & GetDeepNet() const { return *fNet; }
267
271
279
280 const std::vector<TTrainingSettings> &GetTrainingSettings() const { return fTrainingSettings; }
281 std::vector<TTrainingSettings> &GetTrainingSettings() { return fTrainingSettings; }
284
285 /** Setters */
286 void SetInputDepth (int inputDepth) { fInputShape[1] = inputDepth; }
287 void SetInputHeight(int inputHeight) { fInputShape[2] = inputHeight; }
288 void SetInputWidth (int inputWidth) { fInputShape[3] = inputWidth; }
289 void SetInputShape (std::vector<size_t> inputShape) { fInputShape = std::move(inputShape); }
290
291 void SetBatchSize (size_t batchSize) { fInputShape[0] = batchSize; }
295
309};
310
311} // namespace TMVA
312
313#endif
bool Bool_t
Definition RtypesCore.h:63
long long Long64_t
Definition RtypesCore.h:69
#define ClassDef(name, id)
Definition Rtypes.h:342
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
The TCpu architecture class.
Definition Cpu.h:65
AReal Scalar_t
Definition Cpu.h:69
TCpuTensor< AReal > Tensor_t
Definition Cpu.h:70
TCpuBuffer< AReal > HostBuffer_t
Definition Cpu.h:72
TCpuMatrix< AReal > Matrix_t
Definition Cpu.h:71
Generic Deep Neural Network class.
Definition DeepNet.h:73
Class that contains all the data information.
Definition DataSetInfo.h:62
Virtual base Class for all MVA method.
Definition MethodBase.h:111
virtual void ReadWeightsFromStream(std::istream &)=0
KeyValueVector_t & GetKeyValueSettings()
Definition MethodDL.h:283
size_t fBatchHeight
The height of the batch used to train the deep net.
Definition MethodDL.h:183
void GetHelpMessage() const
DNN::ELossFunction fLossFunction
The loss function.
Definition MethodDL.h:190
size_t GetInputDim() const
Definition MethodDL.h:258
TString GetErrorStrategyString() const
Definition MethodDL.h:275
std::vector< size_t > fInputShape
Contains the batch size (no.
Definition MethodDL.h:178
void SetErrorStrategyString(TString errorStrategy)
Definition MethodDL.h:301
TString fLayoutString
The string defining the layout of the deep net.
Definition MethodDL.h:194
std::vector< TTrainingSettings > & GetTrainingSettings()
Definition MethodDL.h:281
void SetInputDepth(int inputDepth)
Setters.
Definition MethodDL.h:286
std::vector< size_t > GetInputShape() const
Definition MethodDL.h:259
std::unique_ptr< MatrixImpl_t > fYHat
Definition MethodDL.h:208
void Train()
Methods for training the deep learning network.
size_t GetBatchHeight() const
Definition MethodDL.h:263
TString GetTrainingStrategyString() const
Definition MethodDL.h:276
virtual std::vector< Double_t > GetMvaValues(Long64_t firstEvt, Long64_t lastEvt, Bool_t logProgress)
Evaluate the DeepNet on a vector of input values stored in the TMVA Event class Here we will evaluate...
TString fWeightInitializationString
The string defining the weight initialization method.
Definition MethodDL.h:197
void ParseMaxPoolLayer(DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim)
Pases the layer string and creates the appropriate max pool layer.
Definition MethodDL.cxx:768
TensorImpl_t fXInput
Definition MethodDL.h:206
size_t fRandomSeed
The random seed used to initialize the weights and shuffling batches (default is zero)
Definition MethodDL.h:186
virtual const std::vector< Float_t > & GetMulticlassValues()
TString fArchitectureString
The string defining the architecture: CPU or GPU.
Definition MethodDL.h:198
void Init()
default initializations
Definition MethodDL.cxx:432
MethodDL(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption)
Constructor.
void TrainDeepNet()
train of deep neural network using the defined architecture
const std::vector< TTrainingSettings > & GetTrainingSettings() const
Definition MethodDL.h:280
DNN::EOutputFunction GetOutputFunction() const
Definition MethodDL.h:269
void ParseDenseLayer(DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim)
Pases the layer string and creates the appropriate dense layer.
Definition MethodDL.cxx:583
UInt_t GetNumValidationSamples()
parce the validation string and return the number of event data used for validation
TString GetBatchLayoutString() const
Definition MethodDL.h:273
void SetInputWidth(int inputWidth)
Definition MethodDL.h:288
void SetArchitectureString(TString architectureString)
Definition MethodDL.h:307
void ProcessOptions()
Definition MethodDL.cxx:219
HostBufferImpl_t fXInputBuffer
Definition MethodDL.h:207
size_t fBatchWidth
The width of the batch used to train the deep net.
Definition MethodDL.h:184
size_t GetInputDepth() const
Definition MethodDL.h:255
std::unique_ptr< DeepNetImpl_t > fNet
Definition MethodDL.h:209
TString GetWeightInitializationString() const
Definition MethodDL.h:277
TString GetInputLayoutString() const
Definition MethodDL.h:272
void SetBatchHeight(size_t batchHeight)
Definition MethodDL.h:293
std::vector< std::map< TString, TString > > KeyValueVector_t
Definition MethodDL.h:93
size_t GetInputHeight() const
Definition MethodDL.h:256
TString GetArchitectureString() const
Definition MethodDL.h:278
void ParseBatchLayout()
Parse the input layout.
Definition MethodDL.cxx:482
void ParseBatchNormLayer(DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim)
Pases the layer string and creates the appropriate reshape layer.
Definition MethodDL.cxx:890
void ReadWeightsFromStream(std::istream &)
void ReadWeightsFromXML(void *wghtnode)
TString fNumValidationString
The string defining the number (or percentage) of training data used for validation.
Definition MethodDL.h:199
typename ArchitectureImpl_t::Tensor_t TensorImpl_t
Definition MethodDL.h:108
const KeyValueVector_t & GetKeyValueSettings() const
Definition MethodDL.h:282
DNN::EOutputFunction fOutputFunction
The output function for making the predictions.
Definition MethodDL.h:189
typename ArchitectureImpl_t::Scalar_t ScalarImpl_t
Definition MethodDL.h:109
DNN::EInitialization fWeightInitialization
The initialization method.
Definition MethodDL.h:188
void SetOutputFunction(DNN::EOutputFunction outputFunction)
Definition MethodDL.h:300
size_t GetBatchDepth() const
Definition MethodDL.h:262
void ParseRecurrentLayer(ERecurrentLayerType type, DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim)
Pases the layer string and creates the appropriate rnn layer.
Definition MethodDL.cxx:931
std::vector< TTrainingSettings > fTrainingSettings
The vector defining each training strategy.
Definition MethodDL.h:204
size_t GetInputWidth() const
Definition MethodDL.h:257
void SetInputShape(std::vector< size_t > inputShape)
Definition MethodDL.h:289
DNN::ELossFunction GetLossFunction() const
Definition MethodDL.h:270
TString fBatchLayoutString
The string defining the layout of the batch.
Definition MethodDL.h:193
void SetWeightInitializationString(TString weightInitializationString)
Definition MethodDL.h:303
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
Check the type of analysis the deep learning network can do.
size_t GetBatchSize() const
Definition MethodDL.h:261
void ParseConvLayer(DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim)
Pases the layer string and creates the appropriate convolutional layer.
Definition MethodDL.cxx:669
void ParseReshapeLayer(DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim)
Pases the layer string and creates the appropriate reshape layer.
Definition MethodDL.cxx:829
virtual const std::vector< Float_t > & GetRegressionValues()
TString fTrainingStrategyString
The string defining the training strategy.
Definition MethodDL.h:196
void SetTrainingStrategyString(TString trainingStrategyString)
Definition MethodDL.h:302
const Ranking * CreateRanking()
void SetLayoutString(TString layoutString)
Definition MethodDL.h:308
const DeepNetImpl_t & GetDeepNet() const
Definition MethodDL.h:266
typename ArchitectureImpl_t::HostBuffer_t HostBufferImpl_t
Definition MethodDL.h:110
void SetBatchDepth(size_t batchDepth)
Definition MethodDL.h:292
KeyValueVector_t fSettings
Map for the training strategy.
Definition MethodDL.h:203
KeyValueVector_t ParseKeyValueString(TString parseString, TString blockDelim, TString tokenDelim)
Function for parsing the training settings, provided as a string in a key-value form.
void SetBatchWidth(size_t batchWidth)
Definition MethodDL.h:294
std::vector< Double_t > PredictDeepNet(Long64_t firstEvt, Long64_t lastEvt, size_t batchSize, Bool_t logProgress)
perform prediction of the deep neural network using batches (called by GetMvaValues)
DNN::EInitialization GetWeightInitialization() const
Definition MethodDL.h:268
void SetBatchSize(size_t batchSize)
Definition MethodDL.h:291
void SetWeightInitialization(DNN::EInitialization weightInitialization)
Definition MethodDL.h:296
TString GetLayoutString() const
Definition MethodDL.h:274
size_t fBatchDepth
The depth of the batch used to train the deep net.
Definition MethodDL.h:182
size_t GetBatchWidth() const
Definition MethodDL.h:264
typename ArchitectureImpl_t::Matrix_t MatrixImpl_t
Definition MethodDL.h:107
void AddWeightsXMLTo(void *parent) const
virtual ~MethodDL()
Virtual Destructor.
Double_t GetMvaValue(Double_t *err=nullptr, Double_t *errUpper=nullptr)
void ParseInputLayout()
Parse the input layout.
Definition MethodDL.cxx:439
void FillInputTensor()
Get the input event tensor for evaluation Internal function to fill the fXInput tensor with the corre...
bool fBuildNet
Flag to control whether to build fNet, the stored network used for the evaluation.
Definition MethodDL.h:201
void SetInputHeight(int inputHeight)
Definition MethodDL.h:287
void CreateDeepNet(DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets)
After calling the ProcesOptions(), all of the options are parsed, so using the parsed options,...
Definition MethodDL.cxx:529
TString fErrorStrategy
The string defining the error strategy for training.
Definition MethodDL.h:195
void DeclareOptions()
The option handling methods.
Definition MethodDL.cxx:167
TString fInputLayoutString
The string defining the layout of the input.
Definition MethodDL.h:192
Ranking for variables in method (implementation)
Definition Ranking.h:48
Basic string class.
Definition TString.h:139
EOptimizer
Enum representing the optimizer used for training.
Definition Functions.h:82
EOutputFunction
Enum that represents output functions.
Definition Functions.h:46
ERegularization
Enum representing the regularization type applied for a given layer.
Definition Functions.h:65
ELossFunction
Enum that represents objective functions for the net, i.e.
Definition Functions.h:57
create variable transformations
All of the options that can be specified in the training string.
Definition MethodDL.h:72
std::map< TString, double > optimizerParams
Definition MethodDL.h:84
DNN::EOptimizer optimizer
Definition MethodDL.h:78
DNN::ERegularization regularization
Definition MethodDL.h:77
std::vector< Double_t > dropoutProbabilities
Definition MethodDL.h:83