Logo ROOT  
Reference Guide
RooMathCoreReg.cxx
Go to the documentation of this file.
1 /*****************************************************************************
2  * Project: RooFit *
3  * Package: RooFitCore *
4  * File: $Id$
5  * Authors: *
6  * WV, Wouter Verkerke, NIKHEF, verkerke@nikhef.nl *
7  * *
8  * Copyright (c) 2000-2008, NIKHEF, Regents of the University of California *
9  * and Stanford University. All rights reserved. *
10  * *
11  *****************************************************************************/
12 
13 /** \class RooMathCoreReg
14  \ingroup Roofit
15 
16 **/
17 
18 #include "Riostream.h"
19 #include "RooMathCoreReg.h"
20 #include "RooCFunction1Binding.h"
21 #include "RooCFunction2Binding.h"
22 #include "RooCFunction3Binding.h"
23 #include "RooCFunction4Binding.h"
24 #include "Math/SpecFuncMathCore.h"
25 #include "Math/DistFuncMathCore.h"
26 
27 namespace {
28 
29 RooMathCoreReg dummy ;
30 
31 }
32 
34 {
35  // Import MathCore 'special' functions from ROOT::Math namespace
36  RooCFunction1Ref<double,double>::fmap().add("ROOT::Math::erf",ROOT::Math::erf,"x") ;
37  RooCFunction1Ref<double,double>::fmap().add("ROOT::Math::erfc",ROOT::Math::erfc,"x") ;
38  RooCFunction1Ref<double,double>::fmap().add("ROOT::Math::tgamma",ROOT::Math::tgamma,"x") ;
39  RooCFunction1Ref<double,double>::fmap().add("ROOT::Math::lgamma",ROOT::Math::lgamma,"x") ;
40  RooCFunction2Ref<double,double,double>::fmap().add("ROOT::Math::inc_gamma",ROOT::Math::inc_gamma,"a","x") ;
41  RooCFunction2Ref<double,double,double>::fmap().add("ROOT::Math::inc_gamma_c",ROOT::Math::inc_gamma_c,"a","x") ;
42  RooCFunction2Ref<double,double,double>::fmap().add("ROOT::Math::beta",ROOT::Math::beta,"x","y") ;
43  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::inc_beta",ROOT::Math::inc_beta,"x","a","b") ;
44 
45  // MathCore pdf functions from ROOT::Math namespace
46  RooCFunction2Ref<double,unsigned int,double>::fmap().add("ROOT::Math::poisson_pdf",ROOT::Math::poisson_pdf, "n","mu") ;
47  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::beta_pdf",ROOT::Math::beta_pdf,"x","a","b") ;
48  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::breitwigner_pdf",ROOT::Math::breitwigner_pdf,"x","gamma","x0") ;
49  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::cauchy_pdf",ROOT::Math::cauchy_pdf,"x","b","x0") ;
50  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::chisquared_pdf",ROOT::Math::chisquared_pdf,"x","r","x0") ;
51  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::exponential_pdf",ROOT::Math::exponential_pdf,"x","lambda","x0") ;
52  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::gaussian_pdf",ROOT::Math::gaussian_pdf,"x","sigma","x0") ;
53  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::landau_pdf",ROOT::Math::landau_pdf,"x","sigma","x0.") ;
54  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::normal_pdf",ROOT::Math::normal_pdf,"x","sigma","x0") ;
55  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::tdistribution_pdf",ROOT::Math::tdistribution_pdf,"x","r","x0") ;
56  RooCFunction3Ref<double,unsigned int,double,unsigned int>::fmap().add("ROOT::Math::binomial_pdf",ROOT::Math::binomial_pdf,"int","double","unsigned") ;
57  RooCFunction4Ref<double,double,double,double,double>::fmap().add("ROOT::Math::fdistribution_pdf",ROOT::Math::fdistribution_pdf,"x","n","m","x0") ;
58  RooCFunction4Ref<double,double,double,double,double>::fmap().add("ROOT::Math::gamma_pdf",ROOT::Math::gamma_pdf,"x","alpha","theta","x0") ;
59  RooCFunction4Ref<double,double,double,double,double>::fmap().add("ROOT::Math::lognormal_pdf",ROOT::Math::lognormal_pdf,"x","m","s","x0") ;
60  RooCFunction4Ref<double,double,double,double,double>::fmap().add("ROOT::Math::uniform_pdf",ROOT::Math::uniform_pdf,"x","a","b","x0") ;
61 
62  // MathCore cdf functions from ROOT::Math namespace uint
63  RooCFunction2Ref<double,unsigned int,double>::fmap().add("ROOT::Math::poisson_cdf_c",ROOT::Math::poisson_cdf_c, "n","mu") ;
64  RooCFunction2Ref<double,unsigned int,double>::fmap().add("ROOT::Math::poisson_cdf",ROOT::Math::poisson_cdf, "n","mu") ;
65  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::beta_cdf_c",ROOT::Math::beta_cdf_c,"x","a","b") ;
66  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::beta_cdf",ROOT::Math::beta_cdf,"x","a","b") ;
67  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::breitwigner_cdf_c",ROOT::Math::breitwigner_cdf_c,"x","gamma","x0") ;
68  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::breitwigner_cdf",ROOT::Math::breitwigner_cdf,"x","gamma","x0") ;
69  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::cauchy_cdf_c",ROOT::Math::cauchy_cdf_c,"x","b","x0") ;
70  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::cauchy_cdf",ROOT::Math::cauchy_cdf,"x","b","x0") ;
71  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::chisquared_cdf_c",ROOT::Math::chisquared_cdf_c,"x","r","x0") ;
72  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::chisquared_cdf",ROOT::Math::chisquared_cdf,"x","r","x0") ;
73  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::exponential_cdf_c",ROOT::Math::exponential_cdf_c,"x","lambda","x0") ;
74  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::exponential_cdf",ROOT::Math::exponential_cdf,"x","lambda","x0") ;
75  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::landau_cdf",ROOT::Math::landau_cdf,"x","sigma","x0") ;
76  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::normal_cdf_c",ROOT::Math::normal_cdf_c,"x","sigma","x0") ;
77  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::normal_cdf",ROOT::Math::normal_cdf,"x","sigma","x0") ;
78  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::tdistribution_cdf_c",ROOT::Math::tdistribution_cdf_c,"x","r","x0") ;
79  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::tdistribution_cdf",ROOT::Math::tdistribution_cdf,"x","r","x0") ;
80  RooCFunction3Ref<double,unsigned int,double,unsigned int>::fmap().add("ROOT::Math::binomial_cdf_c",ROOT::Math::binomial_cdf_c,"int","double","unsigned") ;
81  RooCFunction3Ref<double,unsigned int,double,unsigned int>::fmap().add("ROOT::Math::binomial_cdf",ROOT::Math::binomial_cdf,"int","double","unsigned") ;
82  RooCFunction4Ref<double,double,double,double,double>::fmap().add("ROOT::Math::fdistribution_cdf_c",ROOT::Math::fdistribution_cdf_c,"x","n","m","x0") ;
83  RooCFunction4Ref<double,double,double,double,double>::fmap().add("ROOT::Math::fdistribution_cdf",ROOT::Math::fdistribution_cdf,"x","n","m","x0") ;
84  RooCFunction4Ref<double,double,double,double,double>::fmap().add("ROOT::Math::gamma_cdf_c",ROOT::Math::gamma_cdf_c,"x","alpha","theta","x0") ;
85  RooCFunction4Ref<double,double,double,double,double>::fmap().add("ROOT::Math::gamma_cdf",ROOT::Math::gamma_cdf,"x","alpha","theta","x0") ;
86  RooCFunction4Ref<double,double,double,double,double>::fmap().add("ROOT::Math::lognormal_cdf_c",ROOT::Math::lognormal_cdf_c,"x","m","s","x0") ;
87  RooCFunction4Ref<double,double,double,double,double>::fmap().add("ROOT::Math::lognormal_cdf",ROOT::Math::lognormal_cdf,"x","m","s","x0") ;
88  RooCFunction4Ref<double,double,double,double,double>::fmap().add("ROOT::Math::uniform_cdf_c",ROOT::Math::uniform_cdf_c,"x","a","b","x0") ;
89  RooCFunction4Ref<double,double,double,double,double>::fmap().add("ROOT::Math::uniform_cdf",ROOT::Math::uniform_cdf,"x","a","b","x0") ;
90 
91  // MathCore quantile functions from ROOT::Math namespace
92  RooCFunction2Ref<double,double,double>::fmap().add("ROOT::Math::cauchy_quantile_c",ROOT::Math::cauchy_quantile_c, "z", "b") ;
93  RooCFunction2Ref<double,double,double>::fmap().add("ROOT::Math::cauchy_quantile",ROOT::Math::cauchy_quantile, "z", "b") ;
94  RooCFunction2Ref<double,double,double>::fmap().add("ROOT::Math::breitwigner_quantile_c",ROOT::Math::breitwigner_quantile_c, "z", "gamma") ;
95  RooCFunction2Ref<double,double,double>::fmap().add("ROOT::Math::breitwigner_quantile",ROOT::Math::breitwigner_quantile, "z", "gamma") ;
96  RooCFunction2Ref<double,double,double>::fmap().add("ROOT::Math::chisquared_quantile_c",ROOT::Math::chisquared_quantile_c, "z", "r") ;
97  RooCFunction2Ref<double,double,double>::fmap().add("ROOT::Math::exponential_quantile_c",ROOT::Math::exponential_quantile_c, "z", "lambda") ;
98  RooCFunction2Ref<double,double,double>::fmap().add("ROOT::Math::exponential_quantile",ROOT::Math::exponential_quantile, "z", "lambda") ;
99  RooCFunction2Ref<double,double,double>::fmap().add("ROOT::Math::gaussian_quantile_c",ROOT::Math::gaussian_quantile_c, "z", "sigma") ;
100  RooCFunction2Ref<double,double,double>::fmap().add("ROOT::Math::gaussian_quantile",ROOT::Math::gaussian_quantile, "z", "sigma") ;
101  RooCFunction2Ref<double,double,double>::fmap().add("ROOT::Math::normal_quantile_c",ROOT::Math::normal_quantile_c, "z", "sigma") ;
102  RooCFunction2Ref<double,double,double>::fmap().add("ROOT::Math::normal_quantile",ROOT::Math::normal_quantile, "z", "sigma") ;
103  //RooCFunction2Ref<double,double,double>::fmap().add("ROOT::Math::chisquared_quantile",ROOT::Math::chisquared_quantile, "z", "r") ;
104  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::beta_quantile",ROOT::Math::beta_quantile,"x","a","b") ;
105  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::beta_quantile_c",ROOT::Math::beta_quantile_c,"x","a","b") ;
106  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::fdistribution_quantile",ROOT::Math::fdistribution_quantile,"z","n","m") ;
107  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::fdistribution_quantile_c",ROOT::Math::fdistribution_quantile_c,"z","n","m") ;
108  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::gamma_quantile_c",ROOT::Math::gamma_quantile_c,"z","alpha","theta") ;
109  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::lognormal_quantile_c",ROOT::Math::lognormal_quantile_c,"x","m","s") ;
110  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::lognormal_quantile",ROOT::Math::lognormal_quantile,"x","m","s") ;
111  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::uniform_quantile_c",ROOT::Math::uniform_quantile_c,"z","a","b") ;
112  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::uniform_quantile",ROOT::Math::uniform_quantile,"z","a","b") ;
113  //RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::gamma_quantile",ROOT::Math::gamma_quantile,"z","alpha","theta") ;
114  RooCFunction3Ref<double,double,double,double>::fmap().add("ROOT::Math::gamma_quantile_c",ROOT::Math::gamma_quantile_c,"z","alpha","theta") ;
115 
116 }
RooCFunction2Binding.h
ROOT::Math::exponential_pdf
double exponential_pdf(double x, double lambda, double x0=0)
Probability density function of the exponential distribution.
Definition: PdfFuncMathCore.h:306
ROOT::Math::cauchy_quantile
double cauchy_quantile(double z, double b)
Inverse ( ) of the cumulative distribution function of the lower tail of the Cauchy distribution (cau...
Definition: QuantFuncMathCore.cxx:46
ROOT::Math::erf
double erf(double x)
Error function encountered in integrating the normal distribution.
Definition: SpecFuncMathCore.cxx:59
ROOT::Math::beta_pdf
double beta_pdf(double x, double a, double b)
Probability density function of the beta distribution.
Definition: PdfFuncMathCore.h:82
ROOT::Math::inc_beta
double inc_beta(double x, double a, double b)
Calculates the normalized (regularized) incomplete beta function.
Definition: SpecFuncMathCore.cxx:115
ROOT::Math::chisquared_quantile_c
double chisquared_quantile_c(double z, double r)
Inverse ( ) of the cumulative distribution function of the upper tail of the distribution with degr...
Definition: QuantFuncMathCore.cxx:60
RooMathCoreReg.h
ROOT::Math::gamma_cdf_c
double gamma_cdf_c(double x, double alpha, double theta, double x0=0)
Complement of the cumulative distribution function of the gamma distribution (upper tail).
Definition: ProbFuncMathCore.cxx:198
ROOT::Math::lognormal_quantile
double lognormal_quantile(double x, double m, double s)
Inverse ( ) of the cumulative distribution function of the lower tail of the lognormal distribution (...
Definition: QuantFuncMathCore.cxx:151
ROOT::Math::gamma_quantile_c
double gamma_quantile_c(double z, double alpha, double theta)
Inverse ( ) of the cumulative distribution function of the upper tail of the gamma distribution (gamm...
Definition: QuantFuncMathCore.cxx:112
ROOT::Math::gaussian_quantile_c
double gaussian_quantile_c(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the upper tail of the normal (Gaussian) distri...
Definition: QuantFuncMathCore.h:406
RooCFunction1Binding.h
ROOT::Math::cauchy_quantile_c
double cauchy_quantile_c(double z, double b)
Inverse ( ) of the cumulative distribution function of the upper tail of the Cauchy distribution (cau...
Definition: QuantFuncMathCore.cxx:33
ROOT::Math::poisson_cdf
double poisson_cdf(unsigned int n, double mu)
Cumulative distribution function of the Poisson distribution Lower tail of the integral of the poisso...
Definition: ProbFuncMathCore.cxx:284
ROOT::Math::poisson_cdf_c
double poisson_cdf_c(unsigned int n, double mu)
Complement of the cumulative distribution function of the Poisson distribution.
Definition: ProbFuncMathCore.cxx:275
ROOT::Math::binomial_cdf_c
double binomial_cdf_c(unsigned int k, double p, unsigned int n)
Complement of the cumulative distribution function of the Binomial distribution.
Definition: ProbFuncMathCore.cxx:293
ROOT::Math::uniform_cdf_c
double uniform_cdf_c(double x, double a, double b, double x0=0)
Complement of the cumulative distribution function of the uniform (flat) distribution (upper tail).
Definition: ProbFuncMathCore.cxx:258
SpecFuncMathCore.h
ROOT::Math::fdistribution_cdf_c
double fdistribution_cdf_c(double x, double n, double m, double x0=0)
Complement of the cumulative distribution function of the F-distribution (upper tail).
Definition: ProbFuncMathCore.cxx:169
ROOT::Math::normal_cdf
double normal_cdf(double x, double sigma=1, double x0=0)
Cumulative distribution function of the normal (Gaussian) distribution (lower tail).
Definition: ProbFuncMathCore.cxx:234
ROOT::Math::tgamma
double tgamma(double x)
The gamma function is defined to be the extension of the factorial to real numbers.
Definition: SpecFuncMathCore.cxx:89
RooMathCoreReg
Definition: RooMathCoreReg.h:16
ROOT::Math::lognormal_cdf
double lognormal_cdf(double x, double m, double s, double x0=0)
Cumulative distribution function of the lognormal distribution (lower tail).
Definition: ProbFuncMathCore.cxx:218
ROOT::Math::beta
double beta(double x, double y)
Calculates the beta function.
Definition: SpecFuncMathCore.cxx:111
ROOT::Math::erfc
double erfc(double x)
Complementary error function.
Definition: SpecFuncMathCore.cxx:44
ROOT::Math::beta_quantile
double beta_quantile(double x, double a, double b)
Inverse ( ) of the cumulative distribution function of the upper tail of the beta distribution (beta_...
Definition: QuantFuncMathCore.cxx:26
ROOT::Math::inc_gamma_c
double inc_gamma_c(double a, double x)
Calculates the normalized (regularized) upper incomplete gamma function (upper integral)
Definition: SpecFuncMathCore.cxx:103
ROOT::Math::binomial_pdf
double binomial_pdf(unsigned int k, double p, unsigned int n)
Probability density function of the binomial distribution.
Definition: PdfFuncMathCore.h:118
ROOT::Math::uniform_cdf
double uniform_cdf(double x, double a, double b, double x0=0)
Cumulative distribution function of the uniform (flat) distribution (lower tail).
Definition: ProbFuncMathCore.cxx:266
ROOT::Math::breitwigner_cdf
double breitwigner_cdf(double x, double gamma, double x0=0)
Cumulative distribution function (lower tail) of the Breit_Wigner distribution and it is similar (jus...
Definition: ProbFuncMathCore.cxx:39
RooCFunction3Binding.h
ROOT::Math::cauchy_cdf_c
double cauchy_cdf_c(double x, double b, double x0=0)
Complement of the cumulative distribution function (upper tail) of the Cauchy distribution which is a...
Definition: ProbFuncMathCore.cxx:45
ROOT::Math::fdistribution_cdf
double fdistribution_cdf(double x, double n, double m, double x0=0)
Cumulative distribution function of the F-distribution (lower tail).
Definition: ProbFuncMathCore.cxx:183
ROOT::Math::fdistribution_quantile
double fdistribution_quantile(double z, double n, double m)
Inverse ( ) of the cumulative distribution function of the lower tail of the f distribution (fdistrib...
Definition: QuantFuncMathCore.cxx:103
ROOT::Math::normal_pdf
double normal_pdf(double x, double sigma=1, double x0=0)
Probability density function of the normal (Gaussian) distribution.
Definition: PdfFuncMathCore.h:501
RooCFunction3Ref::fmap
static RooCFunction3Map< VO, VI1, VI2, VI3 > & fmap()
Definition: RooCFunction3Binding.h:136
ROOT::Math::gaussian_pdf
double gaussian_pdf(double x, double sigma=1, double x0=0)
Probability density function of the normal (Gaussian) distribution.
Definition: PdfFuncMathCore.h:402
ROOT::Math::gamma_pdf
double gamma_pdf(double x, double alpha, double theta, double x0=0)
Probability density function of the gamma distribution.
Definition: PdfFuncMathCore.h:363
ROOT::Math::exponential_cdf_c
double exponential_cdf_c(double x, double lambda, double x0=0)
Complement of the cumulative distribution function of the exponential distribution (upper tail).
Definition: ProbFuncMathCore.cxx:154
ROOT::Math::breitwigner_pdf
double breitwigner_pdf(double x, double gamma, double x0=0)
Probability density function of Breit-Wigner distribution, which is similar, just a different definit...
Definition: PdfFuncMathCore.h:175
ROOT::Math::beta_cdf
double beta_cdf(double x, double a, double b)
Cumulative distribution function of the beta distribution Upper tail of the integral of the beta_pdf.
Definition: ProbFuncMathCore.cxx:27
ROOT::Math::landau_cdf
double landau_cdf(double x, double xi=1, double x0=0)
Cumulative distribution function of the Landau distribution (lower tail).
Definition: ProbFuncMathCore.cxx:336
ROOT::Math::cauchy_cdf
double cauchy_cdf(double x, double b, double x0=0)
Cumulative distribution function (lower tail) of the Cauchy distribution which is also Lorentzian dis...
Definition: ProbFuncMathCore.cxx:51
ROOT::Math::landau_pdf
double landau_pdf(double x, double xi=1, double x0=0)
Probability density function of the Landau distribution:
Definition: PdfFuncMathCore.cxx:21
ROOT::Math::lognormal_quantile_c
double lognormal_quantile_c(double x, double m, double s)
Inverse ( ) of the cumulative distribution function of the upper tail of the lognormal distribution (...
Definition: QuantFuncMathCore.cxx:143
ROOT::Math::breitwigner_quantile_c
double breitwigner_quantile_c(double z, double gamma)
Inverse ( ) of the cumulative distribution function of the upper tail of the Breit-Wigner distributio...
Definition: QuantFuncMathCore.h:145
ROOT::Math::gaussian_quantile
double gaussian_quantile(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the lower tail of the normal (Gaussian) distri...
Definition: QuantFuncMathCore.h:431
ROOT::Math::cauchy_pdf
double cauchy_pdf(double x, double b=1, double x0=0)
Probability density function of the Cauchy distribution which is also called Lorentzian distribution.
Definition: PdfFuncMathCore.h:201
DistFuncMathCore.h
ROOT::Math::breitwigner_quantile
double breitwigner_quantile(double z, double gamma)
Inverse ( ) of the cumulative distribution function of the lower tail of the Breit_Wigner distributio...
Definition: QuantFuncMathCore.h:167
ROOT::Math::tdistribution_cdf_c
double tdistribution_cdf_c(double x, double r, double x0=0)
Complement of the cumulative distribution function of Student's t-distribution (upper tail).
Definition: ProbFuncMathCore.cxx:242
ROOT::Math::poisson_pdf
double poisson_pdf(unsigned int n, double mu)
Probability density function of the Poisson distribution.
Definition: PdfFuncMathCore.h:524
RooCFunction1Ref::fmap
static RooCFunction1Map< VO, VI > & fmap()
ROOT::Math::fdistribution_pdf
double fdistribution_pdf(double x, double n, double m, double x0=0)
Probability density function of the F-distribution.
Definition: PdfFuncMathCore.h:332
ROOT::Math::fdistribution_quantile_c
double fdistribution_quantile_c(double z, double n, double m)
Inverse ( ) of the cumulative distribution function of the upper tail of the f distribution (fdistrib...
Definition: QuantFuncMathCore.cxx:89
RooMathCoreReg::RooMathCoreReg
RooMathCoreReg()
Definition: RooMathCoreReg.cxx:33
ROOT::Math::normal_cdf_c
double normal_cdf_c(double x, double sigma=1, double x0=0)
Complement of the cumulative distribution function of the normal (Gaussian) distribution (upper tail)...
Definition: ProbFuncMathCore.cxx:226
ROOT::Math::uniform_quantile_c
double uniform_quantile_c(double z, double a, double b)
Inverse ( ) of the cumulative distribution function of the upper tail of the uniform (flat) distribut...
Definition: QuantFuncMathCore.cxx:175
ROOT::Math::exponential_quantile_c
double exponential_quantile_c(double z, double lambda)
Inverse ( ) of the cumulative distribution function of the upper tail of the exponential distribution...
Definition: QuantFuncMathCore.cxx:74
ROOT::Math::beta_cdf_c
double beta_cdf_c(double x, double a, double b)
Complement of the cumulative distribution function of the beta distribution.
Definition: ProbFuncMathCore.cxx:20
RooCFunction4Binding.h
ROOT::Math::exponential_quantile
double exponential_quantile(double z, double lambda)
Inverse ( ) of the cumulative distribution function of the lower tail of the exponential distribution...
Definition: QuantFuncMathCore.cxx:82
ROOT::Math::normal_quantile
double normal_quantile(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the lower tail of the normal (Gaussian) distri...
Definition: QuantFuncMathCore.cxx:134
RooCFunction2Ref::fmap
static RooCFunction2Map< VO, VI1, VI2 > & fmap()
Definition: RooCFunction2Binding.h:134
ROOT::Math::uniform_quantile
double uniform_quantile(double z, double a, double b)
Inverse ( ) of the cumulative distribution function of the lower tail of the uniform (flat) distribut...
Definition: QuantFuncMathCore.cxx:183
ROOT::Math::normal_quantile_c
double normal_quantile_c(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the upper tail of the normal (Gaussian) distri...
Definition: QuantFuncMathCore.cxx:126
ROOT::Math::lognormal_pdf
double lognormal_pdf(double x, double m, double s, double x0=0)
Probability density function of the lognormal distribution.
Definition: PdfFuncMathCore.h:475
ROOT::Math::gamma_cdf
double gamma_cdf(double x, double alpha, double theta, double x0=0)
Cumulative distribution function of the gamma distribution (lower tail).
Definition: ProbFuncMathCore.cxx:204
ROOT::Math::chisquared_cdf
double chisquared_cdf(double x, double r, double x0=0)
Cumulative distribution function of the distribution with degrees of freedom (lower tail).
Definition: ProbFuncMathCore.cxx:63
RooCFunction4Ref::fmap
static RooCFunction4Map< VO, VI1, VI2, VI3, VI4 > & fmap()
Definition: RooCFunction4Binding.h:132
ROOT::Math::lgamma
double lgamma(double x)
Calculates the logarithm of the gamma function.
Definition: SpecFuncMathCore.cxx:74
ROOT::Math::beta_quantile_c
double beta_quantile_c(double x, double a, double b)
Inverse ( ) of the cumulative distribution function of the lower tail of the beta distribution (beta_...
Definition: QuantFuncMathCore.cxx:16
ROOT::Math::chisquared_cdf_c
double chisquared_cdf_c(double x, double r, double x0=0)
Complement of the cumulative distribution function of the distribution with degrees of freedom (upp...
Definition: ProbFuncMathCore.cxx:57
ROOT::Math::lognormal_cdf_c
double lognormal_cdf_c(double x, double m, double s, double x0=0)
Complement of the cumulative distribution function of the lognormal distribution (upper tail).
Definition: ProbFuncMathCore.cxx:210
Riostream.h
ROOT::Math::chisquared_pdf
double chisquared_pdf(double x, double r, double x0=0)
Probability density function of the distribution with degrees of freedom.
Definition: PdfFuncMathCore.h:225
ROOT::Math::exponential_cdf
double exponential_cdf(double x, double lambda, double x0=0)
Cumulative distribution function of the exponential distribution (lower tail).
Definition: ProbFuncMathCore.cxx:161
ROOT::Math::uniform_pdf
double uniform_pdf(double x, double a, double b, double x0=0)
Probability density function of the uniform (flat) distribution.
Definition: PdfFuncMathCore.h:580
ROOT::Math::breitwigner_cdf_c
double breitwigner_cdf_c(double x, double gamma, double x0=0)
Complement of the cumulative distribution function (upper tail) of the Breit_Wigner distribution and ...
Definition: ProbFuncMathCore.cxx:33
ROOT::Math::inc_gamma
double inc_gamma(double a, double x)
Calculates the normalized (regularized) lower incomplete gamma function (lower integral)
Definition: SpecFuncMathCore.cxx:99
ROOT::Math::tdistribution_cdf
double tdistribution_cdf(double x, double r, double x0=0)
Cumulative distribution function of Student's t-distribution (lower tail).
Definition: ProbFuncMathCore.cxx:250
ROOT::Math::binomial_cdf
double binomial_cdf(unsigned int k, double p, unsigned int n)
Cumulative distribution function of the Binomial distribution Lower tail of the integral of the binom...
Definition: ProbFuncMathCore.cxx:304
ROOT::Math::tdistribution_pdf
double tdistribution_pdf(double x, double r, double x0=0)
Probability density function of Student's t-distribution.
Definition: PdfFuncMathCore.h:555