31#ifndef ROOT_Math_PdfFuncMathCore 
   32#define ROOT_Math_PdfFuncMathCore 
   81      if (
a < 1) 
return  std::numeric_limits<double>::infinity();
 
   82      else if (
a > 1) 
return  0;
 
   83      else if ( 
a == 1) 
return b; 
 
   87      if (
b < 1) 
return  std::numeric_limits<double>::infinity();
 
   88      else if (
b > 1) 
return  0;
 
   89      else if ( 
b == 1) 
return a; 
 
 
  144    if (
n < 0)  
return 0.0;
 
 
  226    if (
x == x0 && 
a == 0) 
return 0.5;
 
 
  251     if (
sigma < 0.)     
return 0.;
 
  252     double z = (
x - mean)/
sigma;
 
  253     if (alpha < 0) z = -z;
 
  259        return std::exp(- 0.5 * z * z);
 
  265     return AA * std::pow(arg,
n);
 
 
  275    if (
sigma < 0.)     
return 0.;
 
  276    if ( 
n <= 1) 
return std::numeric_limits<double>::quiet_NaN();  
 
  278    double C = 
n/
abs_alpha * 1./(
n-1.) * std::exp(-alpha*alpha/2.);
 
  280    double N = 1./(
sigma*(C+D));
 
 
  304    return lambda * std::exp (-lambda * (
x-x0));
 
 
  330      return std::numeric_limits<double>::quiet_NaN();
 
  335                    + (
n/2 -1) * std::log(
x-x0) - ((
n+
m)/2) * std::log(
m +  
n*(
x-x0)) );
 
 
  356  inline double gamma_pdf(
double x, 
double alpha, 
double theta, 
double x0 = 0) {
 
  361    } 
else if ((
x-x0) == 0) {
 
  369    } 
else if (alpha == 1) {
 
  370      return std::exp(-(
x-x0)/theta)/theta;
 
  372      return std::exp((alpha - 1) * std::log((
x-x0)/theta) - (
x-x0)/theta - 
ROOT::Math::lgamma(alpha))/theta;
 
 
  397    double tmp = (
x-x0)/
sigma;
 
  398    return (1.0/(std::sqrt(2 * 
M_PI) * std::abs(
sigma))) * std::exp(-tmp*tmp/2);
 
 
  427    double c = 1. - rho*rho;
 
  428    double z = 
u*
u - 2.*rho*
u*
v + 
v*
v;
 
 
  454   double landau_pdf(
double x, 
double xi = 1, 
double x0 = 0);
 
  480    double tmp = (std::log((
x-x0)) - 
m)/s;
 
  481    return 1.0 / ((
x-x0) * std::abs(s) * std::sqrt(2 * 
M_PI)) * std::exp(-(tmp * tmp) /2);
 
 
  505    double tmp = (
x-x0)/
sigma;
 
  506    return (1.0/(std::sqrt(2 * 
M_PI) * std::abs(
sigma))) * std::exp(-tmp*tmp/2);
 
 
  528    if (
n > 0 && mu >= 0)
 
  533      return std::exp(-mu);
 
  536    return std::numeric_limits<double>::quiet_NaN();
 
 
  560    * std::pow ((1.0 + (
x-x0)*(
x-x0)/
r), -(
r + 1.0)/2.0);
 
 
  586    if ((
x-x0) < 
b && (
x-x0) >= 
a)
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
winID h TVirtualViewer3D TVirtualGLPainter p
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
 
double uniform_pdf(double x, double a, double b, double x0=0)
Probability density function of the uniform (flat) distribution.
 
double bigaussian_pdf(double x, double y, double sigmax=1, double sigmay=1, double rho=0, double x0=0, double y0=0)
Probability density function of the bi-dimensional (Gaussian) distribution.
 
double normal_pdf(double x, double sigma=1, double x0=0)
Probability density function of the normal (Gaussian) distribution with mean x0 and standard deviatio...
 
double lognormal_pdf(double x, double m, double s, double x0=0)
Probability density function of the lognormal distribution.
 
double binomial_pdf(unsigned int k, double p, unsigned int n)
Probability density function of the binomial distribution.
 
double fdistribution_pdf(double x, double n, double m, double x0=0)
Probability density function of the F-distribution.
 
double negative_binomial_pdf(unsigned int k, double p, double n)
Probability density function of the negative binomial distribution.
 
double gamma_pdf(double x, double alpha, double theta, double x0=0)
Probability density function of the gamma distribution.
 
double landau_pdf(double x, double xi=1, double x0=0)
Probability density function of the Landau distribution:
 
double exponential_pdf(double x, double lambda, double x0=0)
Probability density function of the exponential distribution.
 
double gaussian_pdf(double x, double sigma=1, double x0=0)
Probability density function of the normal (Gaussian) distribution with mean x0 and standard deviatio...
 
double chisquared_pdf(double x, double r, double x0=0)
Probability density function of the  distribution with  degrees of freedom.
 
double breitwigner_pdf(double x, double gamma, double x0=0)
Probability density function of Breit-Wigner distribution, which is similar, just a different definit...
 
double crystalball_function(double x, double alpha, double n, double sigma, double mean=0)
Crystal ball function.
 
double crystalball_pdf(double x, double alpha, double n, double sigma, double mean=0)
pdf definition of the crystal_ball which is defined only for n > 1 otherwise integral is diverging
 
double beta_pdf(double x, double a, double b)
Probability density function of the beta distribution.
 
double poisson_pdf(unsigned int n, double mu)
Probability density function of the Poisson distribution.
 
double cauchy_pdf(double x, double b=1, double x0=0)
Probability density function of the Cauchy distribution which is also called Lorentzian distribution.
 
double tdistribution_pdf(double x, double r, double x0=0)
Probability density function of Student's t-distribution.
 
double lgamma(double x)
Calculates the logarithm of the gamma function.
 
double erf(double x)
Error function encountered in integrating the normal distribution.
 
Namespace for new Math classes and functions.
 
double log1p(double x)
declarations for functions which are not implemented by some compilers