5from graph_nets
import utils_tf
12snd =
np.array([1,2,3,4,2,3,4,3,4,4,0,0,0,0,1,1,1,2,2,3], dtype=
'int32')
13rec =
np.array([0,0,0,0,1,1,1,2,2,3,1,2,3,4,2,3,4,3,4,4], dtype=
'int32')
22def get_graph_data_dict(num_nodes, num_edges, NODE_FEATURE_SIZE=2, EDGE_FEATURE_SIZE=2, GLOBAL_FEATURE_SIZE=1):
34 snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True),
40 def __init__(self, name="MLPGraphIndependent"):
43 edge_model_fn =
lambda:
snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True),
44 node_model_fn =
lambda:
snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True),
45 global_model_fn =
lambda:
snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True))
55 edge_model_fn=make_mlp_model,
56 node_model_fn=make_mlp_model,
57 global_model_fn=make_mlp_model)
66 name="EncodeProcessDecode"):
73 def __call__(self, input_op, num_processing_steps):
77 for _
in range(num_processing_steps):
79 latent = self.
_core(core_input)
103output_gn =
ep_model(input_graph_data, processing_steps)
126gen_code =
'''#pragma cling optimize(2)
127#include "gnn_encoder.hxx"
128#include "gnn_core.hxx"
129#include "gnn_decoder.hxx"
130#include "gnn_output_transform.hxx"'''
165 for _
in range(processing_steps):
183for i
in range(0,numevts):
190for i
in range(0,numevts):
191 graphData = dataSet[i]
197 output_gn =
ep_model(inputGraphData, processing_steps)
202for i
in range(0,numevts):
208print(
"elapsed time for ",numevts,
"events = ",end-start)
212for i
in range(0,numevts):
213 graphData = dataSet[i]
223print(
"time to convert data to SOFIE format",endSC-end)
229print(
"time to create SOFIE GNN class", start-start0)
230for i
in range(0,numevts):
237print(
"elapsed time for ",numevts,
"events = ",end-start)
250hDg =
ROOT.TH1D(
"hDg",
"Difference for global data",40,1,0)
252for i
in range(0,numevts):
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
__call__(self, input_op, num_processing_steps)
__init__(self, name="EncodeProcessDecode")
__init__(self, name="MLPGraphIndependent")
__init__(self, name="MLPGraphNetwork")
get_graph_data_dict(num_nodes, num_edges, NODE_FEATURE_SIZE=2, EDGE_FEATURE_SIZE=2, GLOBAL_FEATURE_SIZE=1)
PrintSofie(output, printShape=False)