|
class | TMVA_SOFIE_GNN_Parser.MLPGraphNetwork |
|
|
| TMVA_SOFIE_GNN_Parser.get_dynamic_graph_data_dict (NODE_FEATURE_SIZE=2, EDGE_FEATURE_SIZE=2, GLOBAL_FEATURE_SIZE=1) |
|
| TMVA_SOFIE_GNN_Parser.get_fix_graph_data_dict (num_nodes, num_edges, NODE_FEATURE_SIZE=2, EDGE_FEATURE_SIZE=2, GLOBAL_FEATURE_SIZE=1) |
|
| TMVA_SOFIE_GNN_Parser.make_mlp_model () |
|
| TMVA_SOFIE_GNN_Parser.printMemory (s="") |
|
|
| TMVA_SOFIE_GNN_Parser.CoreGraphData = get_fix_graph_data_dict(num_max_nodes, num_max_edges, 2*LATENT_SIZE, 2*LATENT_SIZE, 2*LATENT_SIZE) |
|
list | TMVA_SOFIE_GNN_Parser.dataset = [] |
|
| TMVA_SOFIE_GNN_Parser.DecodeGraphData = get_fix_graph_data_dict(num_max_nodes, num_max_edges, LATENT_SIZE, LATENT_SIZE, LATENT_SIZE) |
|
| TMVA_SOFIE_GNN_Parser.decoder = ROOT.TMVA.Experimental.SOFIE.RModel_GraphIndependent.ParseFromMemory(ep_model._decoder._network, DecodeGraphData, filename = "decoder") |
|
| TMVA_SOFIE_GNN_Parser.edge_data = ROOT.std.vector['float'](num_max_edges*edge_size) |
|
int | TMVA_SOFIE_GNN_Parser.edge_size = 4 |
|
| TMVA_SOFIE_GNN_Parser.encoder = ROOT.TMVA.Experimental.SOFIE.RModel_GraphIndependent.ParseFromMemory(ep_model._encoder._network, GraphData, filename = "encoder") |
|
| TMVA_SOFIE_GNN_Parser.end = time.time() |
|
| TMVA_SOFIE_GNN_Parser.ep_model = EncodeProcessDecode() |
|
| TMVA_SOFIE_GNN_Parser.fileOut = ROOT.TFile.Open("graph_data.root","RECREATE") |
|
bool | TMVA_SOFIE_GNN_Parser.firstEvent = True |
|
| TMVA_SOFIE_GNN_Parser.global_data = ROOT.std.vector['float'](global_size) |
|
int | TMVA_SOFIE_GNN_Parser.global_size = 1 |
|
| TMVA_SOFIE_GNN_Parser.GraphData = get_fix_graph_data_dict(num_max_nodes, num_max_edges, node_size, edge_size, global_size) |
|
| TMVA_SOFIE_GNN_Parser.graphData = get_dynamic_graph_data_dict(node_size, edge_size, global_size) |
|
| TMVA_SOFIE_GNN_Parser.h1 = ROOT.TH1D("h1","GraphNet nodes output",40,1,0) |
|
| TMVA_SOFIE_GNN_Parser.h2 = ROOT.TH1D("h2","GraphNet edges output",40,1,0) |
|
| TMVA_SOFIE_GNN_Parser.h3 = ROOT.TH1D("h3","GraphNet global output",40,1,0) |
|
| TMVA_SOFIE_GNN_Parser.input_core_graph_data = utils_tf.data_dicts_to_graphs_tuple([CoreGraphData]) |
|
| TMVA_SOFIE_GNN_Parser.input_graph_data = utils_tf.data_dicts_to_graphs_tuple([GraphData]) |
|
int | TMVA_SOFIE_GNN_Parser.LATENT_SIZE = 100 |
|
| TMVA_SOFIE_GNN_Parser.node_data = ROOT.std.vector['float'](num_max_nodes*node_size) |
|
int | TMVA_SOFIE_GNN_Parser.node_size = 4 |
|
| TMVA_SOFIE_GNN_Parser.num_edges = graphData['edges'].shape[0] |
|
int | TMVA_SOFIE_GNN_Parser.NUM_LAYERS = 4 |
|
int | TMVA_SOFIE_GNN_Parser.num_max_edges = 300 |
|
int | TMVA_SOFIE_GNN_Parser.num_max_nodes = 100 |
|
int | TMVA_SOFIE_GNN_Parser.numevts = 100 |
|
| TMVA_SOFIE_GNN_Parser.outgnn = ROOT.std.vector['float'](3) |
|
| TMVA_SOFIE_GNN_Parser.output_edges = output_gnn[-1].edges.numpy() |
|
| TMVA_SOFIE_GNN_Parser.output_globals = output_gnn[-1].globals.numpy() |
|
| TMVA_SOFIE_GNN_Parser.output_gn = ep_model(input_graph_data, processing_steps) |
|
| TMVA_SOFIE_GNN_Parser.output_gnn = ep_model(dataset[0], processing_steps) |
|
| TMVA_SOFIE_GNN_Parser.output_nodes = output_gnn[-1].nodes.numpy() |
|
| TMVA_SOFIE_GNN_Parser.output_transform = ROOT.TMVA.Experimental.SOFIE.RModel_GraphIndependent.ParseFromMemory(ep_model._output_transform._network, DecodeGraphData, filename = "output_transform") |
|
int | TMVA_SOFIE_GNN_Parser.processing_steps = 5 |
|
| TMVA_SOFIE_GNN_Parser.receivers = ROOT.std.vector['int'](num_max_edges) |
|
| TMVA_SOFIE_GNN_Parser.s_edges = graphData['edges'].size |
|
| TMVA_SOFIE_GNN_Parser.s_nodes = graphData['nodes'].size |
|
| TMVA_SOFIE_GNN_Parser.senders = ROOT.std.vector['int'](num_max_edges) |
|
| TMVA_SOFIE_GNN_Parser.start = time.time() |
|
| TMVA_SOFIE_GNN_Parser.tf_graph_data = utils_tf.data_dicts_to_graphs_tuple([graphData]) |
|
| TMVA_SOFIE_GNN_Parser.tmp = ROOT.std.vector['float'](graphData['nodes'].reshape((graphData['nodes'].size))) |
|
| TMVA_SOFIE_GNN_Parser.tree = ROOT.TTree("gdata","GNN data") |
|
bool | TMVA_SOFIE_GNN_Parser.verbose = False |
|