 ROOT   Reference Guide
Searching...
No Matches
RooFit::Detail::AnalyticalIntegrals Namespace Reference

## Functions

double chebychevIntegral (double const *coeffs, unsigned int nCoeffs, double xMin, double xMax, double xMinFull, double xMaxFull)

double exponentialIntegral (double xMin, double xMax, double constant)

double fast_fma (double x, double y, double z) noexcept
use fast FMA if available, fall back to normal arithmetic if not

double gaussianIntegral (double xMin, double xMax, double mean, double sigma)
Function to calculate the integral of an un-normalized RooGaussian over x.

double logNormalIntegral (double xMin, double xMax, double m0, double k)

double logNormalIntegralStandard (double xMin, double xMax, double mu, double sigma)

double max (double x, double y)

double min (double x, double y)

double poissonIntegral (int code, double mu, double x, double integrandMin, double integrandMax, unsigned int protectNegative)

template<bool pdfMode = false>
double polynomialIntegral (double const *coeffs, int nCoeffs, int lowestOrder, double xMin, double xMax)
In pdfMode, a coefficient for the constant term of 1.0 is implied if lowestOrder > 0.

## ◆ chebychevIntegral()

 double RooFit::Detail::AnalyticalIntegrals::chebychevIntegral ( double const * coeffs, unsigned int nCoeffs, double xMin, double xMax, double xMinFull, double xMaxFull )
inline

Definition at line 112 of file AnalyticalIntegrals.h.

## ◆ exponentialIntegral()

 double RooFit::Detail::AnalyticalIntegrals::exponentialIntegral ( double xMin, double xMax, double constant )
inline

Definition at line 69 of file AnalyticalIntegrals.h.

## ◆ fast_fma()

 double RooFit::Detail::AnalyticalIntegrals::fast_fma ( double x, double y, double z )
inlinenoexcept

use fast FMA if available, fall back to normal arithmetic if not

Definition at line 99 of file AnalyticalIntegrals.h.

## ◆ gaussianIntegral()

 double RooFit::Detail::AnalyticalIntegrals::gaussianIntegral ( double xMin, double xMax, double mean, double sigma )
inline

Function to calculate the integral of an un-normalized RooGaussian over x.

To calculate the integral over mean, just interchange the respective values of x and mean.

Parameters
 xMin Minimum value of variable to integrate wrt. xMax Maximum value of of variable to integrate wrt. mean Mean. sigma Sigma.
Returns
The integral of an un-normalized RooGaussian over the value in x.

Definition at line 35 of file AnalyticalIntegrals.h.

## ◆ logNormalIntegral()

 double RooFit::Detail::AnalyticalIntegrals::logNormalIntegral ( double xMin, double xMax, double m0, double k )
inline

Definition at line 237 of file AnalyticalIntegrals.h.

## ◆ logNormalIntegralStandard()

 double RooFit::Detail::AnalyticalIntegrals::logNormalIntegralStandard ( double xMin, double xMax, double mu, double sigma )
inline

Definition at line 248 of file AnalyticalIntegrals.h.

## ◆ max()

 double RooFit::Detail::AnalyticalIntegrals::max ( double x, double y )
inline

Definition at line 178 of file AnalyticalIntegrals.h.

## ◆ min()

 double RooFit::Detail::AnalyticalIntegrals::min ( double x, double y )
inline

Definition at line 183 of file AnalyticalIntegrals.h.

## ◆ poissonIntegral()

 double RooFit::Detail::AnalyticalIntegrals::poissonIntegral ( int code, double mu, double x, double integrandMin, double integrandMax, unsigned int protectNegative )
inline

Definition at line 190 of file AnalyticalIntegrals.h.

## ◆ polynomialIntegral()

template<bool pdfMode = false>
 double RooFit::Detail::AnalyticalIntegrals::polynomialIntegral ( double const * coeffs, int nCoeffs, int lowestOrder, double xMin, double xMax )
inline

In pdfMode, a coefficient for the constant term of 1.0 is implied if lowestOrder > 0.

Definition at line 80 of file AnalyticalIntegrals.h.