44 asimov =
w.pdf(
"p").generateBinned(w[
"x"], ExpectedData=
True)
46 res =
w.pdf(
"p").fitTo(asimov, Save=
True, SumW2Error=
True)
64 plot = w[
"mu"].frame()
74 c1.SaveAs(
"rs302_JeffreysPriorDemo.1.png")
81 w.factory(
"Gaussian.g(x[0,-20,20],mu[0,-5.,5],sigma[1,0,10])")
84 w.var(
"sigma").setConstant()
85 w.var(
"n").setConstant()
87 asimov =
w.pdf(
"p").generateBinned(
w.var(
"x"), ExpectedData())
89 resw.pdf(
"p").fitTo(asimov, Save(), SumW2Error(
True))
111 plot =
w.var(
"mu").frame()
113 test.plotOn(plot, LineColor(kRed), LineStyle(kDashDotted))
120 c2.SaveAs(
"rs302_JeffreysPriorDemo.2.png")
132 w.factory(
"Gaussian.g(x[0,-20,20],mu[0,-5,5],sigma[1,1,5])")
136 w.var(
"mu").setConstant()
137 w.var(
"n").setConstant()
138 w.var(
"x").setBins(301)
140 asimov =
w.pdf(
"p").generateBinned(
w.var(
"x"), ExpectedData())
142 resw.pdf(
"p").fitTo(asimov, Save(), SumW2Error(
True))
160 test =
RooGenericPdf(
"test",
"Expected = #sqrt2/#sigma",
"sqrt(2.)/sigma",
w.set(
"poi"))
163 plot =
w.var(
"sigma").frame()
165 test.plotOn(plot, LineColor(kRed), LineStyle(kDashDotted))
172 c3.SaveAs(
"rs302_JeffreysPriorDemo.3.png")
184 w.factory(
"Gaussian.g(x[0,-20,20],mu[0,-5,5],sigma[1,1.,5.])")
188 w.var(
"n").setConstant()
189 w.var(
"x").setBins(301)
191 asimov =
w.pdf(
"p").generateBinned(
w.var(
"x"), ExpectedData())
193 resw.pdf(
"p").fitTo(asimov, Save(), SumW2Error(
True))
214 "2dJeffreys",
w.var(
"mu"), Binning(10, -5.0, 5), YVar(
w.var(
"sigma"), Binning(10, 1.0, 5.0))
219 c4.SaveAs(
"rs302_JeffreysPriorDemo.4.png")
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
void Print(GNN_Data &d, std::string txt="")
Implementation of a probability density function that takes a RooArgList of servers and a C++ express...
Implementation of Jeffrey's prior.
Persistable container for RooFit projects.