40#ifndef ROOT_TMVA_Factory
41#define ROOT_TMVA_Factory
72 class DataInputHandler;
77 class VariableTransformBase;
187 TH1F*
GetImportance(
const int nbits,std::vector<Double_t> importances,std::vector<TString> varNames);
#define ClassDef(name, id)
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Describe directory structure in memory.
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
A TGraph is an object made of two arrays X and Y with npoints each.
1-D histogram with a float per channel (see TH1 documentation)
Class to perform cross validation, splitting the dataloader into folds.
Class that contains all the data information.
This is the main MVA steering class.
void PrintHelpMessage(const TString &datasetname, const TString &methodTitle="") const
Print predefined help message of classifier.
Bool_t fSilentFile
! used in constructor without file
Bool_t fCorrelations
! enable to calculate correlations
Bool_t IsModelPersistence() const
TString fOptions
! option string given by construction (presently only "V")
std::vector< IMethod * > MVector
void TrainAllMethods()
Iterates through all booked methods and calls training.
Bool_t Verbose(void) const
void WriteDataInformation(DataSetInfo &fDataSetInfo)
MethodBase * BookMethod(DataLoader *loader, TString theMethodName, TString methodTitle, TString theOption="")
Book a classifier or regression method.
void TestAllMethods()
Evaluates all booked methods on the testing data and adds the output to the Results in the corresponi...
void TrainAllMethodsForClassification(void)
Bool_t fVerbose
! verbose mode
void EvaluateAllMethods(void)
Iterates over all MVAs that have been booked, and calls their evaluation methods.
TH1F * EvaluateImportanceRandom(DataLoader *loader, UInt_t nseeds, Types::EMVA theMethod, TString methodTitle, const char *theOption="")
TH1F * GetImportance(const int nbits, std::vector< Double_t > importances, std::vector< TString > varNames)
Bool_t fROC
! enable to calculate ROC values
void EvaluateAllVariables(DataLoader *loader, TString options="")
Iterates over all MVA input variables and evaluates them.
TDirectory * RootBaseDir()
TString fVerboseLevel
! verbosity level, controls granularity of logging
TMultiGraph * GetROCCurveAsMultiGraph(DataLoader *loader, UInt_t iClass, Types::ETreeType type=Types::kTesting)
Generate a collection of graphs, for all methods for a given class.
TH1F * EvaluateImportance(DataLoader *loader, VIType vitype, Types::EMVA theMethod, TString methodTitle, const char *theOption="")
Evaluate Variable Importance.
void OptimizeAllMethodsForRegression(TString fomType="ROCIntegral", TString fitType="FitGA")
Double_t GetROCIntegral(DataLoader *loader, TString theMethodName, UInt_t iClass=0, Types::ETreeType type=Types::kTesting)
Calculate the integral of the ROC curve, also known as the area under curve (AUC),...
std::map< TString, MVector * > fMethodsMap
void SetInputTreesFromEventAssignTrees()
virtual ~Factory()
Destructor.
virtual void MakeClass(const TString &datasetname, const TString &methodTitle="") const
MethodBase * BookMethodWeightfile(DataLoader *dataloader, TMVA::Types::EMVA methodType, const TString &weightfile)
Adds an already constructed method to be managed by this factory.
Bool_t fModelPersistence
! option to save the trained model in xml file or using serialization
std::map< TString, Double_t > OptimizeAllMethods(TString fomType="ROCIntegral", TString fitType="FitGA")
Iterates through all booked methods and sees if they use parameter tuning and if so does just that,...
void OptimizeAllMethodsForClassification(TString fomType="ROCIntegral", TString fitType="FitGA")
ROCCurve * GetROC(DataLoader *loader, TString theMethodName, UInt_t iClass=0, Types::ETreeType type=Types::kTesting)
Private method to generate a ROCCurve instance for a given method.
Bool_t IsSilentFile() const
TH1F * EvaluateImportanceShort(DataLoader *loader, Types::EMVA theMethod, TString methodTitle, const char *theOption="")
Types::EAnalysisType fAnalysisType
! the training type
TString fJobName
! jobname, used as extension in weight file names
Bool_t HasMethod(const TString &datasetname, const TString &title) const
Checks whether a given method name is defined for a given dataset.
TGraph * GetROCCurve(DataLoader *loader, TString theMethodName, Bool_t setTitles=kTRUE, UInt_t iClass=0, Types::ETreeType type=Types::kTesting)
Argument iClass specifies the class to generate the ROC curve in a multiclass setting.
MethodBase * BookMethod(DataLoader *, TMVA::Types::EMVA, TString, TString, TMVA::Types::EMVA, TString)
void TrainAllMethodsForRegression(void)
TH1F * EvaluateImportanceAll(DataLoader *loader, Types::EMVA theMethod, TString methodTitle, const char *theOption="")
void SetVerbose(Bool_t v=kTRUE)
TFile * fgTargetFile
! ROOT output file
std::vector< TMVA::VariableTransformBase * > fDefaultTrfs
! list of transformations on default DataSet
IMethod * GetMethod(const TString &datasetname, const TString &title) const
Returns pointer to MVA that corresponds to given method title.
void DeleteAllMethods(void)
Delete methods.
TString fTransformations
! list of transformations to test
void Greetings()
Print welcome message.
Interface for all concrete MVA method implementations.
Virtual base Class for all MVA method.
A TMultiGraph is a collection of TGraph (or derived) objects.
A TTree represents a columnar dataset.
create variable transformations