11 #ifndef ROOSTATS_HypoTestInverterResult 12 #define ROOSTATS_HypoTestInverterResult 16 #ifndef ROOSTATS_SimpleInterval 26 class SamplingDistribution;
80 double CLb(
int index)
const;
83 double CLs(
int index)
const;
190 double GetExpectedLimit(
double nsig,
bool lower,
const char * opt =
"" )
const ;
194 double xmin=1;
double xmax = 0;
195 return GetGraphX(g,y0,lowSearch,xmin,xmax);
double GetExpectedLowerLimit(double nsig=0, const char *opt="") const
get Limit value correspnding at the desired nsigma level (0) is median -1 sigma is 1 sigma ...
SamplingDistribution * GetSignalAndBackgroundTestStatDist(int index) const
SamplingDistribution * GetExpectedPValueDist(int index) const
return expected distribution of p-values (Cls or Clsplusb)
HypoTestInverter class for performing an hypothesis test inversion by scanning the hypothesis test re...
int FindClosestPointIndex(double target, int mode=0, double xtarget=0)
void SetCLsCleanupThreshold(Double_t th)
set CLs threshold for exclusion cleanup function
virtual void SetTestSize(Double_t size)
set the size of the test (rate of Type I error) (eg. 0.05 for a 95% Confidence Interval) ...
double GetExpectedUpperLimit(double nsig=0, const char *opt="") const
get Limit value correspnding at the desired nsigma level (0) is median -1 sigma is 1 sigma ...
int FindIndex(double xvalue) const
HypoTestInverterResult(const char *name=0)
default constructor
double GetXValue(int index) const
function to return the value of the parameter of interest for the i^th entry in the results ...
HypoTestResult is a base class for results from hypothesis tests.
HypoTestResult * GetResult(int index) const
return a pointer to the i^th result object
double GetYError(int index) const
function to return the estimated error on the value of the confidence level for the i^th entry in the...
void SetInterpolationOption(InterpolOption_t opt)
set the interpolation option, linear (kLinear ) or spline (kSpline)
#define ClassDef(name, id)
double FindInterpolatedLimit(double target, bool lowSearch=false, double xmin=1, double xmax=0)
double CLsError(int index) const
return the observed CLb value for the i-th entry
Double_t fConfidenceLevel
SamplingDistribution * GetLowerLimitDistribution() const
get expected lower limit distributions implemented using interpolation The size for the sampling dist...
virtual ~HypoTestInverterResult()
destructor
double GetExpectedLimit(double nsig, bool lower, const char *opt="") const
void UseCLs(bool on=true)
flag to switch between using CLsb (default) or CLs as confidence level
double CLsplusb(int index) const
return the observed CLsplusb value for the i-th entry
Double_t LowerLimit()
lower and upper bound of the confidence interval (to get upper/lower limits, multiply the size( = 1-c...
bool fInterpolateLowerLimit
two sided scan (look for lower/upper limit)
int ExclusionCleanup()
remove points that appear to have failed.
RooRealVar represents a fundamental (non-derived) real valued object.
double CLs(int index) const
return the observed CLb value for the i-th entry
double GetLastYError() const
SamplingDistribution * GetBackgroundTestStatDist(int index) const
double CLbError(int index) const
return the observed CLb value for the i-th entry
double CLb(int index) const
return the observed CLb value for the i-th entry
double fCLsCleanupThreshold
TList fExpPValues
list of HypoTestResult for each point
SamplingDistribution * GetUpperLimitDistribution() const
get expected upper limit distributions implemented using interpolation
static int fgAsymptoticNumPoints
max sigma value used to scan asymptotic expected p values
This class simply holds a sampling distribution of some test statistic.
bool IsTwoSided() const
query if two sided result
HypoTestResult * GetLastResult() const
static double fgAsymptoticMaxSigma
InterpolOption_t GetInterpolationOption() const
Namespace for the RooStats classes.
This class is now depratcated and to be replaced by the HypoTestInverter.
HypoTestInverterResult class: holds the array of hypothesis test results and compute a confidence int...
Class to plot an HypoTestInverterResult, result of the HypoTestInverter calculator.
Double_t LowerLimitEstimatedError()
rough estimation of the error on the computed bound of the confidence interval Estimate of lower limi...
InterpolOption_t fInterpolOption
double GetLastYValue() const
double GetYValue(int index) const
function to return the value of the confidence level for the i^th entry in the results ...
double GetLastXValue() const
double GetGraphX(const TGraph &g, double y0, bool lowSearch=true) const
Double_t UpperLimitEstimatedError()
Estimate of lower limit error function evaluates only a rought error on the lower limit...
HypoTestInverterResult & operator=(const HypoTestInverterResult &other)
operator =
double fLowerLimitError
interpolatation option (linear or spline)
SamplingDistribution * GetNullTestStatDist(int index) const
same in terms of alt and null
A Graph is a graphics object made of two arrays X and Y with npoints each.
double GetGraphX(const TGraph &g, double y0, bool lowSearch, double &xmin, double &xmax) const
SamplingDistribution * GetLimitDistribution(bool lower) const
bool Add(const HypoTestInverterResult &otherResult)
merge with the content of another HypoTestInverterResult object
double CalculateEstimatedError(double target, bool lower=true, double xmin=1, double xmax=0)
double CLsplusbError(int index) const
return the observed CLsplusb value for the i-th entry
int ArraySize() const
number of entries in the results array
bool fInterpolateUpperLimit
virtual void SetConfidenceLevel(Double_t cl)
set the confidence level for the interval (eg. 0.95 for a 95% Confidence Interval) ...
bool IsOneSided() const
query if one sided result
SamplingDistribution * GetAltTestStatDist(int index) const
std::vector< double > fXValues
number of points used to build expected p-values