31 #ifndef ROOT_TMVA_MethodFDA    32 #define ROOT_TMVA_MethodFDA    49 #ifndef ROOT_TMVA_MethodBase    52 #ifndef ROOT_TMVA_IFitterTarget   162 #endif // MethodFDA_H void Init(void)
default initialisation 
 
Double_t fSumOfWeightsBkg
 
void DeclareOptions()
define the options (their key words) that can be set in the option string 
 
void ClearAll()
delete and clear all class members 
 
Double_t InterpretFormula(const Event *, std::vector< Double_t >::iterator begin, std::vector< Double_t >::iterator end)
formula interpretation 
 
void CreateFormula()
translate formula string into TFormula, and parameter string into par ranges 
 
MethodFDA(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
standard constructor 
 
void CheckSetup()
check may be overridden by derived class (sometimes, eg, fitters are used which can only be implement...
 
std::vector< Double_t > fBestPars
 
#define ClassDef(name, id)
 
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
returns MVA value for given event 
 
std::vector< Interval * > fParRange
 
void PrintResults(const TString &, std::vector< Double_t > &, const Double_t) const
display fit parameters check maximum length of variable name 
 
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
FDA can handle classification with 2 classes and regression with one regression-target. 
 
void GetHelpMessage() const
get help message text 
 
const Ranking * CreateRanking()
 
void MakeClassSpecific(std::ostream &, const TString &) const
write FDA-specific classifier response 
 
void CalculateMulticlassValues(const TMVA::Event *&evt, std::vector< Double_t > ¶meters, std::vector< Float_t > &values)
calculate the values for multiclass 
 
IFitterTarget * fConvergerFitter
 
void ReadWeightsFromXML(void *wghtnode)
read coefficients from xml weight file 
 
void Train(void)
FDA training. 
 
void ProcessOptions()
the option string is decoded, for availabel options see "DeclareOptions" 
 
void AddWeightsXMLTo(void *parent) const
create XML description for LD classification and regression (for arbitrary number of output classes/t...
 
Double_t EstimatorFunction(std::vector< Double_t > &)
compute estimator for given parameter set (to be minimised) const Double_t sumOfWeights[] = { fSumOfW...
 
void ReadWeightsFromStream(std::istream &i)
read back the training results from a file (stream) 
 
Double_t fSumOfWeightsSig
 
Abstract ClassifierFactory template that handles arbitrary types. 
 
virtual const std::vector< Float_t > & GetRegressionValues()
 
virtual const std::vector< Float_t > & GetMulticlassValues()
 
virtual void ReadWeightsFromStream(std::istream &)=0
 
virtual ~MethodFDA(void)
destructor