31 #ifndef ROOT_TMVA_MethodTMlpANN 32 #define ROOT_TMVA_MethodTMlpANN 43 #ifndef ROOT_TMVA_MethodBase 58 const TString& theOption =
"3000:N-1:N-2");
void Train(void)
performs TMlpANN training available learning methods:
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
calculate the value of the neural net for the current event
Double_t fValidationFraction
void GetHelpMessage() const
get help message text
#define ClassDef(name, id)
MethodTMlpANN(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="3000:N-1:N-2")
standard constructor
void Init(void)
default initialisations
void ReadWeightsFromXML(void *wghtnode)
rebuild temporary textfile from xml weightfile and load this file into MLP
virtual ~MethodTMlpANN(void)
destructor
void ProcessOptions()
builds the neural network as specified by the user
void SetHiddenLayer(TString hiddenlayer="")
TMultiLayerPerceptron * fMLP
const Ranking * CreateRanking()
TTree * fLocalTrainingTree
void ReadWeightsFromStream(std::istream &istr)
read weights from stream since the MLP can not read from the stream, we 1st: write the weights to tem...
void MakeClass(const TString &classFileName=TString("")) const
create reader class for classifier -> overwrites base class function create specific class for TMulti...
Abstract ClassifierFactory template that handles arbitrary types.
void AddWeightsXMLTo(void *parent) const
write weights to xml file
void CreateMLPOptions(TString)
translates options from option string into TMlpANN language
A TTree object has a header with a name and a title.
virtual void ReadWeightsFromStream(std::istream &)=0
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response nothing to do here - all taken care of by TMultiLayerPerceptron ...
void DeclareOptions()
define the options (their key words) that can be set in the option string know options: NCycles <inte...
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
TMlpANN can handle classification with 2 classes.