63 if ((*it) != 0)
delete (*it);
83 Log() <<
kINFO <<
"Preparing the Decorrelation transformation..." <<
Endl;
88 if (inputSize > 200) {
89 Log() <<
kINFO <<
"----------------------------------------------------------------------------" 92 <<
": More than 200 variables, will not calculate decorrelation matrix " 94 Log() <<
kINFO <<
"----------------------------------------------------------------------------" 111 Int_t whichMatrix = cls;
120 Log() <<
kFATAL <<
"Transformation matrix all classes is not defined" 123 Log() <<
kFATAL <<
"Transformation matrix for class " << whichMatrix <<
" is not defined" 128 std::vector<TString>* strVec =
new std::vector<TString>;
131 for (
Int_t ivar=0; ivar<nvar; ivar++) {
133 for (
Int_t jvar=0; jvar<nvar; jvar++) {
134 str += ((*m)(ivar,jvar) > 0) ?
" + " :
" - ";
150 Log() <<
kFATAL <<
"VariableDecorrTransform::GetTransformationStrings : unknown type '" << type <<
"'." <<
Endl;
153 strVec->push_back( str );
165 Log() <<
kFATAL <<
"Transformation matrix not yet created" 168 Int_t whichMatrix = cls;
181 Log() <<
kFATAL <<
"Transformation matrix all classes is not defined" 184 Log() <<
kFATAL <<
"Transformation matrix for class " << whichMatrix <<
" is not defined" 196 std::vector<Float_t> input;
197 std::vector<Char_t> mask;
200 if( hasMaskedEntries ){
203 if( numMasked>0 && numOK>0 ){
204 Log() <<
kFATAL <<
"You mixed variables and targets in the decorrelation transformation. This is not possible." <<
Endl;
211 for (
Int_t ivar=0; ivar<nvar; ivar++) vec(ivar) = input.at(ivar);
217 for (
Int_t ivar=0; ivar<nvar; ivar++) input.push_back( vec(ivar) );
230 Log() <<
kFATAL <<
"Inverse transformation for decorrelation transformation not yet implemented. Hence, this transformation cannot be applied together with regression if targets should be transformed. Please contact the authors if necessary." <<
Endl;
245 if (0 != (*it) ) {
delete (*it); *it=0; }
249 const UInt_t matNum = (maxCls<=1)?maxCls:maxCls+1;
255 for (
UInt_t cls=0; cls<matNum; cls++) {
258 Log() <<
kFATAL <<
"<GetSQRMats> Zero pointer returned for SQR matrix" <<
Endl;
260 delete (*covMat)[cls];
271 Int_t dp = o.precision();
273 o <<
"# correlation matrix " << std::endl;
275 o << cls <<
" " << mat->
GetNrows() <<
" x " << mat->
GetNcols() << std::endl;
278 o << std::setprecision(12) << std::setw(20) << (*mat)[row][col] <<
" ";
284 o <<
"##" << std::endl;
285 o << std::setprecision(dp);
322 if( (*it) != 0 )
delete (*it);
327 void* inpnode =
NULL;
350 std::stringstream s(content);
351 for (
Int_t row = 0; row<nrows; row++) {
352 for (
Int_t col = 0; col<ncols; col++) {
353 s >> (*mat)[row][col];
369 istr.getline(buf,512);
371 Int_t nrows(0), ncols(0);
373 while (!(buf[0]==
'#'&& buf[1]==
'#')) {
375 while (*p==
' ' || *p==
'\t') p++;
376 if (*p==
'#' || *p==
'\0') {
377 istr.getline(buf,512);
380 std::stringstream sstr(buf);
383 if (strvar==
"signal" || strvar==
"background") {
385 if(strvar==
"background") cls=1;
386 if(strvar==classname) classIdx = cls;
388 sstr >> nrows >> dummy >> ncols;
395 istr >> (*mat)[row][col];
399 istr.getline(buf,512);
414 Log() <<
kINFO <<
"Transformation matrix "<< cls <<
":" <<
Endl;
424 Int_t dp = fout.precision();
431 fout <<
" double fDecTF_"<<trCounter<<
"["<<numC<<
"]["<<mat->
GetNrows()<<
"]["<<mat->
GetNcols()<<
"];" << std::endl;
436 fout <<
"//_______________________________________________________________________" << std::endl;
437 fout <<
"inline void " << fcncName <<
"::InitTransform_"<<trCounter<<
"()" << std::endl;
438 fout <<
"{" << std::endl;
439 fout <<
" // Decorrelation transformation, initialisation" << std::endl;
440 for (
UInt_t icls = 0; icls < numC; icls++){
442 for (
int i=0; i<matx->
GetNrows(); i++) {
443 for (
int j=0; j<matx->
GetNcols(); j++) {
444 fout <<
" fDecTF_"<<trCounter<<
"["<<icls<<
"]["<<i<<
"]["<<j<<
"] = " << std::setprecision(12) << (*matx)[i][j] <<
";" << std::endl;
448 fout <<
"}" << std::endl;
451 fout <<
"//_______________________________________________________________________" << std::endl;
452 fout <<
"inline void " << fcncName <<
"::Transform_"<<trCounter<<
"( std::vector<double>& iv, int cls) const" << std::endl;
453 fout <<
"{" << std::endl;
454 fout <<
" // Decorrelation transformation" << std::endl;
455 fout <<
" if (cls < 0 || cls > "<<
GetNClasses()<<
") {"<< std::endl;
457 fout <<
" else cls = "<<(
fDecorrMatrices.size()==1?0:2)<<
";"<< std::endl;
458 fout <<
" }"<< std::endl;
462 fout <<
" std::vector<double> tv;" << std::endl;
463 fout <<
" for (int i=0; i<"<<matx->
GetNrows()<<
";i++) {" << std::endl;
464 fout <<
" double v = 0;" << std::endl;
465 fout <<
" for (int j=0; j<"<<matx->
GetNcols()<<
"; j++)" << std::endl;
466 fout <<
" v += iv[indicesGet.at(j)] * fDecTF_"<<trCounter<<
"[cls][i][j];" << std::endl;
467 fout <<
" tv.push_back(v);" << std::endl;
468 fout <<
" }" << std::endl;
469 fout <<
" for (int i=0; i<"<<matx->
GetNrows()<<
";i++) iv[indicesPut.at(i)] = tv[i];" << std::endl;
470 fout <<
"}" << std::endl;
473 fout << std::setprecision(dp);
MsgLogger & Endl(MsgLogger &ml)
virtual void Print(Option_t *option="") const
This method must be overridden when a class wants to print itself.
std::vector< std::vector< double > > Data
TMatrixT< Double_t > TMatrixD
char * Form(const char *fmt,...)
UInt_t GetNVariables() const
accessor to the number of variables
static RooMathCoreReg dummy
Abstract ClassifierFactory template that handles arbitrary types.