Definition at line 22 of file GaussFcn2.h.

 GaussFcn2 (const std::vector< double > &meas, const std::vector< double > &pos, const std::vector< double > &mvar) 

 ~GaussFcn2 () 

virtual double  ErrorDef () const 
 Error definition of the function. More...


virtual void  Init () 

std::vector< double >  Measurements () const 

virtual double  operator() (const std::vector< double > &) const 
 The meaning of the vector of parameters is of course defined by the user, who uses the values of those parameters to calculate their function Value. More...


std::vector< double >  Positions () const 

virtual double  Up () const 
 Error definition of the function. More...


std::vector< double >  Variances () const 

virtual  ~FCNBase () 

virtual void  SetErrorDef (double) 
 add interface to set dynamically a new error definition Reimplement this function if needed. More...


virtual  ~GenericFunction () 

#include </mnt/build/workspace/rootmakedocv608/rootspi/rdoc/src/v60800patches/math/minuit2/test/MnSim/GaussFcn2.h>
◆ GaussFcn2()
ROOT::Minuit2::GaussFcn2::GaussFcn2 
( 
const std::vector< double > & 
meas, 


const std::vector< double > & 
pos, 


const std::vector< double > & 
mvar 

) 
 

inline 
◆ ~GaussFcn2()
ROOT::Minuit2::GaussFcn2::~GaussFcn2 
( 
 ) 


inline 
◆ ErrorDef()
virtual double ROOT::Minuit2::GaussFcn2::ErrorDef 
( 
 ) 
const 

inlinevirtual 
Error definition of the function.
MINUIT defines Parameter errors as the change in Parameter Value required to change the function Value by up. Normally, for chisquared fits it is 1, and for negative log likelihood, its Value is 0.5. If the user wants instead the 2sigma errors for chisquared fits, it becomes 4, as Chi2(x+n*sigma) = Chi2(x) + n*n.
Comment a little bit better with links!!!!!!!!!!!!!!!!!
Reimplemented from ROOT::Minuit2::FCNBase.
Definition at line 38 of file GaussFcn2.h.
◆ Init()
void ROOT::Minuit2::GaussFcn2::Init 
( 
 ) 


virtual 
◆ Measurements()
std::vector<double> ROOT::Minuit2::GaussFcn2::Measurements 
( 
 ) 
const 

inline 
◆ operator()()
double ROOT::Minuit2::GaussFcn2::operator() 
( 
const std::vector< double > & 
x  ) 
const 

virtual 
The meaning of the vector of parameters is of course defined by the user, who uses the values of those parameters to calculate their function Value.
The order and the position of these parameters is strictly the one specified by the user when supplying the starting values for minimization. The starting values must be specified by the user, either via an std::vector<double> or the MnUserParameters supplied as input to the MINUIT minimizers such as VariableMetricMinimizer or MnMigrad. Later values are determined by MINUIT as it searches for the Minimum or performs whatever analysis is requested by the user.
 Parameters

par  function parameters as defined by the user. 
 Returns
 the Value of the function.
 See also
 MnUserParameters

VariableMetricMinimizer

MnMigrad
Implements ROOT::Minuit2::FCNBase.
Definition at line 21 of file GaussFcn2.cxx.
◆ Positions()
std::vector<double> ROOT::Minuit2::GaussFcn2::Positions 
( 
 ) 
const 

inline 
◆ Up()
virtual double ROOT::Minuit2::GaussFcn2::Up 
( 
 ) 
const 

inlinevirtual 
Error definition of the function.
MINUIT defines Parameter errors as the change in Parameter Value required to change the function Value by up. Normally, for chisquared fits it is 1, and for negative log likelihood, its Value is 0.5. If the user wants instead the 2sigma errors for chisquared fits, it becomes 4, as Chi2(x+n*sigma) = Chi2(x) + n*n.
Implements ROOT::Minuit2::FCNBase.
Definition at line 36 of file GaussFcn2.h.
◆ Variances()
std::vector<double> ROOT::Minuit2::GaussFcn2::Variances 
( 
 ) 
const 

inline 
◆ fMeasurements
std::vector<double> ROOT::Minuit2::GaussFcn2::fMeasurements 

private 
◆ fMin
double ROOT::Minuit2::GaussFcn2::fMin 

private 
◆ fMVariances
std::vector<double> ROOT::Minuit2::GaussFcn2::fMVariances 

private 
◆ fPositions
std::vector<double> ROOT::Minuit2::GaussFcn2::fPositions 

private 
The documentation for this class was generated from the following files: