Logo ROOT   6.08/07
Reference Guide
exp.h
Go to the documentation of this file.
1 /*
2  * exp.h
3  * The basic idea is to exploit Pade polynomials.
4  * A lot of ideas were inspired by the cephes math library (by Stephen L. Moshier
5  * moshier@na-net.ornl.gov) as well as actual code.
6  * The Cephes library can be found here: http://www.netlib.org/cephes/
7  *
8  * Created on: Jun 23, 2012
9  * Author: Danilo Piparo, Thomas Hauth, Vincenzo Innocente
10  */
11 
12 /*
13  * VDT is free software: you can redistribute it and/or modify
14  * it under the terms of the GNU Lesser Public License as published by
15  * the Free Software Foundation, either version 3 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21  * GNU Lesser Public License for more details.
22  *
23  * You should have received a copy of the GNU Lesser Public License
24  * along with this program. If not, see <http://www.gnu.org/licenses/>.
25  */
26 
27 #ifndef _VDT_EXP_
28 #define _VDT_EXP_
29 
30 #include "vdtcore_common.h"
31 #include <limits>
32 
33 namespace vdt{
34 
35 namespace details{
36 
37  const double EXP_LIMIT = 708;
38 
39  const double PX1exp = 1.26177193074810590878E-4;
40  const double PX2exp = 3.02994407707441961300E-2;
41  const double PX3exp = 9.99999999999999999910E-1;
42  const double QX1exp = 3.00198505138664455042E-6;
43  const double QX2exp = 2.52448340349684104192E-3;
44  const double QX3exp = 2.27265548208155028766E-1;
45  const double QX4exp = 2.00000000000000000009E0;
46 
47  const double LOG2E = 1.4426950408889634073599; // 1/log(2)
48 
49  const float MAXLOGF = 88.72283905206835f;
50  const float MINLOGF = -88.f;
51 
52  const float C1F = 0.693359375f;
53  const float C2F = -2.12194440e-4f;
54 
55  const float PX1expf = 1.9875691500E-4f;
56  const float PX2expf =1.3981999507E-3f;
57  const float PX3expf =8.3334519073E-3f;
58  const float PX4expf =4.1665795894E-2f;
59  const float PX5expf =1.6666665459E-1f;
60  const float PX6expf =5.0000001201E-1f;
61 
62  const float LOG2EF = 1.44269504088896341f;
63 
64 }
65 
66 // Exp double precision --------------------------------------------------------
67 
68 
69 /// Exponential Function double precision
70 inline double fast_exp(double initial_x){
71 
72  double x = initial_x;
73  double px=details::fpfloor(details::LOG2E * x +0.5);
74 
75  const int32_t n = int32_t(px);
76 
77  x -= px * 6.93145751953125E-1;
78  x -= px * 1.42860682030941723212E-6;
79 
80  const double xx = x * x;
81 
82  // px = x * P(x**2).
83  px = details::PX1exp;
84  px *= xx;
85  px += details::PX2exp;
86  px *= xx;
87  px += details::PX3exp;
88  px *= x;
89 
90  // Evaluate Q(x**2).
91  double qx = details::QX1exp;
92  qx *= xx;
93  qx += details::QX2exp;
94  qx *= xx;
95  qx += details::QX3exp;
96  qx *= xx;
97  qx += details::QX4exp;
98 
99  // e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
100  x = px / (qx - px);
101  x = 1.0 + 2.0 * x;
102 
103  // Build 2^n in double.
104  x *= details::uint642dp(( ((uint64_t)n) +1023)<<52);
105 
106  if (initial_x > details::EXP_LIMIT)
107  x = std::numeric_limits<double>::infinity();
108  if (initial_x < -details::EXP_LIMIT)
109  x = 0.;
110 
111  return x;
112 
113 }
114 
115 // Exp single precision --------------------------------------------------------
116 
117 /// Exponential Function single precision
118 inline float fast_expf(float initial_x) {
119 
120  float x = initial_x;
121 
122  float z = details::fpfloor( details::LOG2EF * x +0.5f ); /* floor() truncates toward -infinity. */
123 
124  x -= z * details::C1F;
125  x -= z * details::C2F;
126  const int32_t n = int32_t ( z );
127 
128  const float x2 = x * x;
129 
130  z = x*details::PX1expf;
131  z += details::PX2expf;
132  z *= x;
133  z += details::PX3expf;
134  z *= x;
135  z += details::PX4expf;
136  z *= x;
137  z += details::PX5expf;
138  z *= x;
139  z += details::PX6expf;
140  z *= x2;
141  z += x + 1.0f;
142 
143  /* multiply by power of 2 */
144  z *= details::uint322sp((n+0x7f)<<23);
145 
146  if (initial_x > details::MAXLOGF) z=std::numeric_limits<float>::infinity();
147  if (initial_x < details::MINLOGF) z=0.f;
148 
149  return z;
150 
151  }
152 
153 //------------------------------------------------------------------------------
154 
155 // void expv(const uint32_t size, double const * __restrict__ iarray, double* __restrict__ oarray);
156 // void fast_expv(const uint32_t size, double const * __restrict__ iarray, double* __restrict__ oarray);
157 // void expfv(const uint32_t size, float const * __restrict__ iarray, float* __restrict__ oarray);
158 // void fast_expfv(const uint32_t size, float const * __restrict__ iarray, float* __restrict__ oarray);
159 
160 } // end namespace vdt
161 
162 #endif
float fast_expf(float initial_x)
Exponential Function single precision.
Definition: exp.h:118
const float C2F
Definition: exp.h:53
const double QX4exp
Definition: exp.h:45
double fast_exp(double initial_x)
Exponential Function double precision.
Definition: exp.h:70
float uint322sp(int x)
Converts an int to a float.
const float PX4expf
Definition: exp.h:58
const float PX3expf
Definition: exp.h:57
const double LOG2E
Definition: exp.h:47
const double PX2exp
Definition: exp.h:40
static const double x2[5]
Double_t x[n]
Definition: legend1.C:17
const double QX3exp
Definition: exp.h:44
const float MINLOGF
Definition: exp.h:50
const float PX5expf
Definition: exp.h:59
double fpfloor(const double x)
A vectorisable floor implementation, not only triggered by fast-math.
const double PX3exp
Definition: exp.h:41
const float PX6expf
Definition: exp.h:60
const float MAXLOGF
Definition: exp.h:49
const float PX1expf
Definition: exp.h:55
const double QX2exp
Definition: exp.h:43
double uint642dp(uint64_t ll)
Converts an unsigned long long to a double.
const double QX1exp
Definition: exp.h:42
const float LOG2EF
Definition: exp.h:62
double f(double x)
const double PX1exp
Definition: exp.h:39
Definition: asin.h:32
you should not use this method at all Int_t Int_t z
Definition: TRolke.cxx:630
const double EXP_LIMIT
Definition: exp.h:37
const float PX2expf
Definition: exp.h:56
const float C1F
Definition: exp.h:52
const Int_t n
Definition: legend1.C:16