Example of a Multi Layer Perceptron For a LEP search for invisible Higgs boson, a neural network was used to separate the signal from the background passing some selection cuts.
Here is a simplified version of this network, taking into account only WW events.
Processing /mnt/build/workspace/root-makedoc-v608/rootspi/rdoc/src/v6-08-00-patches/tutorials/mlp/mlpHiggs.C...
accessing mlpHiggs.root file from http://root.cern.ch/files
Training the Neural Network
Epoch: 0 learn=0.125538 test=0.124608
Epoch: 10 learn=0.0941838 test=0.0889561
Epoch: 20 learn=0.0923599 test=0.0883568
Epoch: 30 learn=0.0911554 test=0.0884875
Epoch: 40 learn=0.090906 test=0.0883875
Epoch: 50 learn=0.0903995 test=0.0878378
Epoch: 60 learn=0.0900266 test=0.0874796
Epoch: 70 learn=0.0896705 test=0.0867551
Epoch: 80 learn=0.0892654 test=0.086541
Epoch: 90 learn=0.0890064 test=0.086034
Epoch: 99 learn=0.0889131 test=0.0856958
Training done.
test.py created.
Network with structure: @msumf,@ptsumf,@acolin:5:3:type
inputs with low values in the differences plot may not be needed
@msumf -> 0.0160321 +/- 0.0162528
@ptsumf -> 0.0311201 +/- 0.0357935
@acolin -> 0.0334271 +/- 0.0311946
void mlpHiggs(
Int_t ntrain=100) {
const char *fname = "mlpHiggs.root";
} else {
printf("accessing %s file from http://root.cern.ch/files\n",fname);
}
if (!input) return;
TTree *simu =
new TTree(
"MonteCarlo",
"Filtered Monte Carlo Events");
Float_t ptsumf, qelep, nch, msumf, minvis, acopl, acolin;
simu->
Branch(
"ptsumf", &ptsumf,
"ptsumf/F");
simu->
Branch(
"qelep", &qelep,
"qelep/F");
simu->
Branch(
"nch", &nch,
"nch/F");
simu->
Branch(
"msumf", &msumf,
"msumf/F");
simu->
Branch(
"minvis", &minvis,
"minvis/F");
simu->
Branch(
"acopl", &acopl,
"acopl/F");
simu->
Branch(
"acolin", &acolin,
"acolin/F");
simu->
Branch(
"type", &type,
"type/I");
type = 1;
for (i = 0; i < sig_filtered->
GetEntries(); i++) {
}
type = 0;
}
"ptsumf",simu,"Entry$%2","(Entry$+1)%2");
mlp->
Train(ntrain,
"text,graph,update=10");
ana.GatherInformations();
ana.CheckNetwork();
ana.DrawDInputs();
ana.DrawNetwork(0,"type==1","type==0");
TH1F *bg =
new TH1F(
"bgh",
"NN output", 50, -.5, 1.5);
TH1F *sig =
new TH1F(
"sigh",
"NN output", 50, -.5, 1.5);
params[0] = msumf;
params[1] = ptsumf;
params[2] = acolin;
}
for (i = 0; i < sig_filtered->
GetEntries(); i++) {
params[0] = msumf;
params[1] = ptsumf;
params[2] = acolin;
}
legend->
AddEntry(bg,
"Background (WW)");
legend->
AddEntry(sig,
"Signal (Higgs)");
delete input;
}
- Author
- Christophe Delaere
Definition in file mlpHiggs.C.