Logo ROOT   6.10/09
Reference Guide
mathmoreIntegration.C File Reference

Detailed Description

View in nbviewer Open in SWAN Example on the usage of the adaptive 1D integration algorithm of MathMore it calculates the numerically cumulative integral of a distribution (like in this case the BreitWigner) to execute the macro type it (you need to compile with AClic)

root[0] .x mathmoreIntegration.C+

This tutorials require having libMathMore built with ROOT.

To build mathmore you need to have a version of GSL >= 1.8 installed in your system The ROOT configure will automatically find GSL if the script gsl-config (from GSL) is in your PATH,. otherwise you need to configure root with the options –gsl-incdir and –gsl-libdir.

pict1_mathmoreIntegration.C.png
Processing /mnt/build/workspace/root-makedoc-v610/rootspi/rdoc/src/v6-10-00-patches/tutorials/math/mathmoreIntegration.C...
***************************************************************
Drawing cumulatives of BreitWigner in interval [ -2 , 2 ]
***************************************************************
***************************************************************
Test integration performances in interval [ -2 , 2 ]
Time using ROOT::Math::Integrator : 0.096416
Number of function calls = 69
42201.6649413923442
Time using TF1::Integral : 0.463239
Number of function calls = 91
42201.6649413923442
#include "TMath.h"
#include "TH1.h"
#include "TCanvas.h"
#include "TLegend.h"
/*#include "TLabel.h"*/
#include "Math/Functor.h"
#include "Math/IFunction.h"
#include <iostream>
#include "TStopwatch.h"
#include "TF1.h"
#include <limits>
//!calculates exact integral of Breit Wigner distribution
//!and compares with existing methods
int nc = 0;
double exactIntegral( double a, double b) {
return (TMath::ATan(2*b)- TMath::ATan(2*a))/ TMath::Pi();
}
double func( double x){
nc++;
return TMath::BreitWigner(x);
}
// TF1 requires the function to have the ( )( double *, double *) signature
double func2(const double *x, const double * = 0){
nc++;
return TMath::BreitWigner(x[0]);
}
void testIntegPerf(double x1, double x2, int n = 100000){
std::cout << "\n\n***************************************************************\n";
std::cout << "Test integration performances in interval [ " << x1 << " , " << x2 << " ]\n\n";
double dx = (x2-x1)/double(n);
//ROOT::Math::Functor1D<ROOT::Math::IGenFunction> f1(& TMath::BreitWigner);
timer.Start();
double s1 = 0.0;
nc = 0;
for (int i = 0; i < n; ++i) {
double x = x1 + dx*i;
s1+= ig.Integral(x1,x);
}
timer.Stop();
std::cout << "Time using ROOT::Math::Integrator :\t" << timer.RealTime() << std::endl;
std::cout << "Number of function calls = " << nc/n << std::endl;
int pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr);
//TF1 *fBW = new TF1("fBW","TMath::BreitWigner(x)",x1, x2); // this is faster but cannot measure number of function calls
TF1 *fBW = new TF1("fBW",func2,x1, x2,0);
timer.Start();
nc = 0;
double s2 = 0;
for (int i = 0; i < n; ++i) {
double x = x1 + dx*i;
s2+= fBW->Integral(x1,x );
}
timer.Stop();
std::cout << "Time using TF1::Integral :\t\t\t" << timer.RealTime() << std::endl;
std::cout << "Number of function calls = " << nc/n << std::endl;
pr = std::cout.precision(18); std::cout << s1 << std::endl; std::cout.precision(pr);
}
void DrawCumulative(double x1, double x2, int n = 100){
std::cout << "\n\n***************************************************************\n";
std::cout << "Drawing cumulatives of BreitWigner in interval [ " << x1 << " , " << x2 << " ]\n\n";
double dx = (x2-x1)/double(n);
TH1D *cum0 = new TH1D("cum0", "", n, x1, x2); //exact cumulative
for (int i = 1; i <= n; ++i) {
double x = x1 + dx*i;
cum0->SetBinContent(i, exactIntegral(x1, x));
}
// alternative method using ROOT::Math::Functor class
TH1D *cum1 = new TH1D("cum1", "", n, x1, x2);
for (int i = 1; i <= n; ++i) {
double x = x1 + dx*i;
cum1->SetBinContent(i, ig.Integral(x1,x));
}
TF1 *fBW = new TF1("fBW","TMath::BreitWigner(x, 0, 1)",x1, x2);
TH1D *cum2 = new TH1D("cum2", "", n, x1, x2);
for (int i = 1; i <= n; ++i) {
double x = x1 + dx*i;
cum2->SetBinContent(i, fBW->Integral(x1,x));
}
TH1D *cum10 = new TH1D("cum10", "", n, x1, x2); //difference between 1 and exact
TH1D *cum20 = new TH1D("cum23", "", n, x1, x2); //difference between 2 and excact
for (int i = 1; i <= n; ++i) {
double delta = cum1->GetBinContent(i) - cum0->GetBinContent(i);
double delta2 = cum2->GetBinContent(i) - cum0->GetBinContent(i);
//std::cout << " diff for " << x << " is " << delta << " " << cum1->GetBinContent(i) << std::endl;
cum10->SetBinContent(i, delta );
cum20->SetBinContent(i, delta2 );
}
TCanvas *c1 = new TCanvas("c1","Integration example",20,10,800,500);
c1->Divide(2,1);
c1->Draw();
cum0->SetTitle("BreitWigner - the cumulative");
cum0->SetStats(0);
cum1->SetLineStyle(2);
cum2->SetLineStyle(3);
cum1->SetLineColor(kBlue);
cum2->SetLineColor(kRed);
c1->cd(1);
cum0->DrawCopy("h");
cum1->DrawCopy("same");
//cum2->DrawCopy("same");
cum2->DrawCopy("same");
c1->cd(2);
cum10->SetTitle("Difference");
cum10->SetStats(0);
cum10->SetLineColor(kBlue);
cum10->Draw("e0");
cum20->SetLineColor(kRed);
cum20->Draw("hsame");
TLegend * l = new TLegend(0.11, 0.8, 0.7 ,0.89);
l->AddEntry(cum10, "GSL integration - analytical ");
l->AddEntry(cum20, "TF1::Integral - analytical ");
l->Draw();
c1->Update();
std::cout << "\n***************************************************************\n";
}
void mathmoreIntegration(double a = -2, double b = 2)
{
DrawCumulative(a, b);
}
Authors
M. Slawinska, L. Moneta

Definition in file mathmoreIntegration.C.