Logo ROOT   6.12/07
Reference Guide
FFT.C
Go to the documentation of this file.
1 /// \file
2 /// \ingroup tutorial_fft
3 /// \notebook -js
4 /// This tutorial illustrates the Fast Fourier Transforms interface in ROOT.
5 /// FFT transform types provided in ROOT:
6 ///
7 /// - "C2CFORWARD" - a complex input/output discrete Fourier transform (DFT)
8 /// in one or more dimensions, -1 in the exponent
9 /// - "C2CBACKWARD"- a complex input/output discrete Fourier transform (DFT)
10 /// in one or more dimensions, +1 in the exponent
11 /// - "R2C" - a real-input/complex-output discrete Fourier transform (DFT)
12 /// in one or more dimensions,
13 /// - "C2R" - inverse transforms to "R2C", taking complex input
14 /// (storing the non-redundant half of a logically Hermitian array)
15 /// to real output
16 /// - "R2HC" - a real-input DFT with output in "halfcomplex" format,
17 /// i.e. real and imaginary parts for a transform of size n stored as
18 /// r0, r1, r2, ..., rn/2, i(n+1)/2-1, ..., i2, i1
19 /// - "HC2R" - computes the reverse of FFTW_R2HC, above
20 /// - "DHT" - computes a discrete Hartley transform
21 ///
22 ///
23 ///
24 /// Sine/cosine transforms:
25 ///
26 /// - DCT-I (REDFT00 in FFTW3 notation)
27 /// - DCT-II (REDFT10 in FFTW3 notation)
28 /// - DCT-III(REDFT01 in FFTW3 notation)
29 /// - DCT-IV (REDFT11 in FFTW3 notation)
30 /// - DST-I (RODFT00 in FFTW3 notation)
31 /// - DST-II (RODFT10 in FFTW3 notation)
32 /// - DST-III(RODFT01 in FFTW3 notation)
33 /// - DST-IV (RODFT11 in FFTW3 notation)
34 ///
35 /// First part of the tutorial shows how to transform the histograms
36 /// Second part shows how to transform the data arrays directly
37 ///
38 /// \macro_image
39 /// \macro_output
40 /// \macro_code
41 ///
42 /// \authors Anna Kreshuk, Jens Hoffmann
43 
44 #include "TH1D.h"
45 #include "TVirtualFFT.h"
46 #include "TF1.h"
47 #include "TCanvas.h"
48 #include "TMath.h"
49 
50 void FFT()
51 {
52  // Histograms
53  // =========
54  //prepare the canvas for drawing
55  TCanvas *myc = new TCanvas("myc", "Fast Fourier Transform", 800, 600);
56  myc->SetFillColor(45);
57  TPad *c1_1 = new TPad("c1_1", "c1_1",0.01,0.67,0.49,0.99);
58  TPad *c1_2 = new TPad("c1_2", "c1_2",0.51,0.67,0.99,0.99);
59  TPad *c1_3 = new TPad("c1_3", "c1_3",0.01,0.34,0.49,0.65);
60  TPad *c1_4 = new TPad("c1_4", "c1_4",0.51,0.34,0.99,0.65);
61  TPad *c1_5 = new TPad("c1_5", "c1_5",0.01,0.01,0.49,0.32);
62  TPad *c1_6 = new TPad("c1_6", "c1_6",0.51,0.01,0.99,0.32);
63  c1_1->Draw();
64  c1_2->Draw();
65  c1_3->Draw();
66  c1_4->Draw();
67  c1_5->Draw();
68  c1_6->Draw();
69  c1_1->SetFillColor(30);
70  c1_1->SetFrameFillColor(42);
71  c1_2->SetFillColor(30);
72  c1_2->SetFrameFillColor(42);
73  c1_3->SetFillColor(30);
74  c1_3->SetFrameFillColor(42);
75  c1_4->SetFillColor(30);
76  c1_4->SetFrameFillColor(42);
77  c1_5->SetFillColor(30);
78  c1_5->SetFrameFillColor(42);
79  c1_6->SetFillColor(30);
80  c1_6->SetFrameFillColor(42);
81 
82  c1_1->cd();
84 
85  //A function to sample
86  TF1 *fsin = new TF1("fsin", "sin(x)+sin(2*x)+sin(0.5*x)+1", 0, 4*TMath::Pi());
87  fsin->Draw();
88 
89  Int_t n=25;
90  TH1D *hsin = new TH1D("hsin", "hsin", n+1, 0, 4*TMath::Pi());
91  Double_t x;
92 
93  //Fill the histogram with function values
94  for (Int_t i=0; i<=n; i++){
95  x = (Double_t(i)/n)*(4*TMath::Pi());
96  hsin->SetBinContent(i+1, fsin->Eval(x));
97  }
98  hsin->Draw("same");
99  fsin->GetXaxis()->SetLabelSize(0.05);
100  fsin->GetYaxis()->SetLabelSize(0.05);
101 
102  c1_2->cd();
103  //Compute the transform and look at the magnitude of the output
104  TH1 *hm =0;
106  hm = hsin->FFT(hm, "MAG");
107  hm->SetTitle("Magnitude of the 1st transform");
108  hm->Draw();
109  //NOTE: for "real" frequencies you have to divide the x-axes range with the range of your function
110  //(in this case 4*Pi); y-axes has to be rescaled by a factor of 1/SQRT(n) to be right: this is not done automatically!
111 
112  hm->SetStats(kFALSE);
113  hm->GetXaxis()->SetLabelSize(0.05);
114  hm->GetYaxis()->SetLabelSize(0.05);
115  c1_3->cd();
116  //Look at the phase of the output
117  TH1 *hp = 0;
118  hp = hsin->FFT(hp, "PH");
119  hp->SetTitle("Phase of the 1st transform");
120  hp->Draw();
121  hp->SetStats(kFALSE);
122  hp->GetXaxis()->SetLabelSize(0.05);
123  hp->GetYaxis()->SetLabelSize(0.05);
124 
125  //Look at the DC component and the Nyquist harmonic:
126  Double_t re, im;
127  //That's the way to get the current transform object:
129  c1_4->cd();
130  //Use the following method to get just one point of the output
131  fft->GetPointComplex(0, re, im);
132  printf("1st transform: DC component: %f\n", re);
133  fft->GetPointComplex(n/2+1, re, im);
134  printf("1st transform: Nyquist harmonic: %f\n", re);
135 
136  //Use the following method to get the full output:
137  Double_t *re_full = new Double_t[n];
138  Double_t *im_full = new Double_t[n];
139  fft->GetPointsComplex(re_full,im_full);
140 
141  //Now let's make a backward transform:
142  TVirtualFFT *fft_back = TVirtualFFT::FFT(1, &n, "C2R M K");
143  fft_back->SetPointsComplex(re_full,im_full);
144  fft_back->Transform();
145  TH1 *hb = 0;
146  //Let's look at the output
147  hb = TH1::TransformHisto(fft_back,hb,"Re");
148  hb->SetTitle("The backward transform result");
149  hb->Draw();
150  //NOTE: here you get at the x-axes number of bins and not real values
151  //(in this case 25 bins has to be rescaled to a range between 0 and 4*Pi;
152  //also here the y-axes has to be rescaled (factor 1/bins)
153  hb->SetStats(kFALSE);
154  hb->GetXaxis()->SetLabelSize(0.05);
155  hb->GetYaxis()->SetLabelSize(0.05);
156  delete fft_back;
157  fft_back=0;
158 
159 // Data array - same transform
160 // ===========================
161 
162  //Allocate an array big enough to hold the transform output
163  //Transform output in 1d contains, for a transform of size N,
164  //N/2+1 complex numbers, i.e. 2*(N/2+1) real numbers
165  //our transform is of size n+1, because the histogram has n+1 bins
166 
167  Double_t *in = new Double_t[2*((n+1)/2+1)];
168  Double_t re_2,im_2;
169  for (Int_t i=0; i<=n; i++){
170  x = (Double_t(i)/n)*(4*TMath::Pi());
171  in[i] = fsin->Eval(x);
172  }
173 
174  //Make our own TVirtualFFT object (using option "K")
175  //Third parameter (option) consists of 3 parts:
176  //- transform type:
177  // real input/complex output in our case
178  //- transform flag:
179  // the amount of time spent in planning
180  // the transform (see TVirtualFFT class description)
181  //- to create a new TVirtualFFT object (option "K") or use the global (default)
182  Int_t n_size = n+1;
183  TVirtualFFT *fft_own = TVirtualFFT::FFT(1, &n_size, "R2C ES K");
184  if (!fft_own) return;
185  fft_own->SetPoints(in);
186  fft_own->Transform();
187 
188  //Copy all the output points:
189  fft_own->GetPoints(in);
190  //Draw the real part of the output
191  c1_5->cd();
192  TH1 *hr = 0;
193  hr = TH1::TransformHisto(fft_own, hr, "RE");
194  hr->SetTitle("Real part of the 3rd (array) tranfsorm");
195  hr->Draw();
196  hr->SetStats(kFALSE);
197  hr->GetXaxis()->SetLabelSize(0.05);
198  hr->GetYaxis()->SetLabelSize(0.05);
199  c1_6->cd();
200  TH1 *him = 0;
201  him = TH1::TransformHisto(fft_own, him, "IM");
202  him->SetTitle("Im. part of the 3rd (array) transform");
203  him->Draw();
204  him->SetStats(kFALSE);
205  him->GetXaxis()->SetLabelSize(0.05);
206  him->GetYaxis()->SetLabelSize(0.05);
207 
208  myc->cd();
209  //Now let's make another transform of the same size
210  //The same transform object can be used, as the size and the type of the transform
211  //haven't changed
212  TF1 *fcos = new TF1("fcos", "cos(x)+cos(0.5*x)+cos(2*x)+1", 0, 4*TMath::Pi());
213  for (Int_t i=0; i<=n; i++){
214  x = (Double_t(i)/n)*(4*TMath::Pi());
215  in[i] = fcos->Eval(x);
216  }
217  fft_own->SetPoints(in);
218  fft_own->Transform();
219  fft_own->GetPointComplex(0, re_2, im_2);
220  printf("2nd transform: DC component: %f\n", re_2);
221  fft_own->GetPointComplex(n/2+1, re_2, im_2);
222  printf("2nd transform: Nyquist harmonic: %f\n", re_2);
223  delete fft_own;
224  delete [] in;
225  delete [] re_full;
226  delete [] im_full;
227 }
228 
static void SetTransform(TVirtualFFT *fft)
static: set the current transfrom to parameter
virtual void SetPointsComplex(const Double_t *re, const Double_t *im)=0
static TVirtualFFT * GetCurrentTransform()
static: return current fgFFT
TVirtualPad * cd(Int_t subpadnumber=0)
Set current canvas & pad.
Definition: TCanvas.cxx:688
TAxis * GetXaxis() const
Get x axis of the function.
Definition: TF1.cxx:2282
int Int_t
Definition: RtypesCore.h:41
virtual void Draw(Option_t *option="")
Draw this function with its current attributes.
Definition: TF1.cxx:1222
static void AddDirectory(Bool_t add=kTRUE)
Sets the flag controlling the automatic add of histograms in memory.
Definition: TH1.cxx:1225
TAxis * GetYaxis() const
Get y axis of the function.
Definition: TF1.cxx:2293
TVirtualPad * cd(Int_t subpadnumber=0)
Set Current pad.
Definition: TPad.cxx:585
Double_t x[n]
Definition: legend1.C:17
constexpr Double_t Pi()
Definition: TMath.h:40
virtual void Draw(Option_t *option="")
Draw Pad in Current pad (re-parent pad if necessary).
Definition: TPad.cxx:1272
virtual TH1 * FFT(TH1 *h_output, Option_t *option)
This function allows to do discrete Fourier transforms of TH1 and TH2.
Definition: TH1.cxx:3184
virtual void Draw(Option_t *option="")
Draw this histogram with options.
Definition: TH1.cxx:2969
virtual void SetFillColor(Color_t fcolor)
Set the fill area color.
Definition: TAttFill.h:37
static TH1 * TransformHisto(TVirtualFFT *fft, TH1 *h_output, Option_t *option)
For a given transform (first parameter), fills the histogram (second parameter) with the transform ou...
Definition: TH1.cxx:8575
static TVirtualFFT * FFT(Int_t ndim, Int_t *n, Option_t *option)
Returns a pointer to the FFT of requested size and type.
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
Definition: TH1.cxx:8477
The most important graphics class in the ROOT system.
Definition: TPad.h:29
virtual void Transform()=0
virtual void GetPointsComplex(Double_t *re, Double_t *im, Bool_t fromInput=kFALSE) const =0
TAxis * GetYaxis()
Definition: TH1.h:316
1-D histogram with a double per channel (see TH1 documentation)}
Definition: TH1.h:610
virtual void SetLabelSize(Float_t size=0.04)
Set size of axis labels The size is expressed in per cent of the pad width.
Definition: TAttAxis.cxx:204
virtual void SetPoints(const Double_t *data)=0
const Bool_t kFALSE
Definition: RtypesCore.h:88
TVirtualFFT is an interface class for Fast Fourier Transforms.
Definition: TVirtualFFT.h:88
virtual void GetPoints(Double_t *data, Bool_t fromInput=kFALSE) const =0
The Canvas class.
Definition: TCanvas.h:31
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const
Evaluate this function.
Definition: TF1.cxx:1334
virtual void GetPointComplex(Int_t ipoint, Double_t &re, Double_t &im, Bool_t fromInput=kFALSE) const =0
double Double_t
Definition: RtypesCore.h:55
The TH1 histogram class.
Definition: TH1.h:56
1-Dim function class
Definition: TF1.h:211
THist< 1, double, THistStatContent, THistStatUncertainty > TH1D
Definition: THist.hxx:284
void SetFrameFillColor(Color_t color=1)
Definition: TAttPad.h:73
virtual void SetTitle(const char *title)
See GetStatOverflows for more information.
Definition: TH1.cxx:6154
const Int_t n
Definition: legend1.C:16
virtual void SetStats(Bool_t stats=kTRUE)
Set statistics option on/off.
Definition: TH1.cxx:8247
TAxis * GetXaxis()
Get the behaviour adopted by the object about the statoverflows. See EStatOverflows for more informat...
Definition: TH1.h:315