30 #ifndef ROOT_TMVA_MethodLD    31 #define ROOT_TMVA_MethodLD    58                 const TString& theOption = 
"LD");
 virtual const std::vector< Float_t > & GetRegressionValues()
Calculates the regression output. 
const Ranking * CreateRanking()
computes ranking of input variables 
std::vector< std::vector< Double_t > *> * fLDCoeff
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
LD can handle classification with 2 classes and regression with one regression-target. 
void GetSumVal(void)
Calculates the vector transposed(X)*W*Y with Y being the target vector. 
Virtual base Class for all MVA method. 
Ranking for variables in method (implementation) 
virtual ~MethodLD(void)
destructor 
void PrintCoefficients(void)
Display the classification/regression coefficients for each variable. 
void ReadWeightsFromXML(void *wghtnode)
read coefficients from xml weight file 
Double_t GetMvaValue(Double_t *err=0, Double_t *errUpper=0)
Returns the MVA classification output. 
#define ClassDef(name, id)
Class that contains all the data information. 
void ReadWeightsFromStream(std::istream &i)
read LD coefficients from weight file 
void DeclareOptions()
MethodLD options. 
void MakeClassSpecific(std::ostream &, const TString &) const
write LD-specific classifier response 
MethodLD(const TString &jobName, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="LD")
standard constructor for the LD 
void GetSum(void)
Calculates the matrix transposed(X)*W*X with W being the diagonal weight matrix and X the coordinates...
Abstract ClassifierFactory template that handles arbitrary types. 
void GetLDCoeff(void)
Calculates the coefficients used for classification/regression. 
void Train(void)
compute fSumMatx 
void InitMatrices(void)
Initialization method; creates global matrices and vectors. 
void GetHelpMessage() const
get help message text 
void Init(void)
default initialization called by all constructors 
virtual void ReadWeightsFromStream(std::istream &)=0
void AddWeightsXMLTo(void *parent) const
create XML description for LD classification and regression (for arbitrary number of output classes/t...
void ProcessOptions()
this is the preparation for training