25                          const TString &methodTitle,
    53    std::vector<std::vector<Float_t> > fArrayTrain(nvar);
    58    for (
UInt_t j = 0; j < ntrains; j++) {
    68       for (
UInt_t i = 0; i < nvar; i++) {
    69          fArrayTrain[i].push_back(ev->
GetValue(i));
    73    for (
UInt_t i = 0; i < nvar; i++) {
    84    std::vector<std::vector<Float_t> > fArrayTest(nvar);
    86    std::vector<std::vector<Float_t> > fArraySpectators(nvar);
    89    for (
UInt_t j = 0; j < ntests; j++) {
    98       for (
UInt_t i = 0; i < nvar; i++) {
    99          fArrayTest[i].push_back(ev->
GetValue(i));
   101       for (
UInt_t i = 0; i < nspectators; i++) {
   105    for (
UInt_t i = 0; i < nvar; i++) {
   108    for (
UInt_t i = 0; i < nspectators; i++) {
 UInt_t GetNVariables() const
TVectorT< Element > & ResizeTo(Int_t lwb, Int_t upb)
Resize the vector to [lwb:upb] . 
std::vector< std::string > fFactorTest
ROOT::R::TRDataFrame fDfTest
std::vector< TString > GetListOfVariables() const
returns list of variables 
Virtual base Class for all MVA method. 
const TString & GetLabel() const
ROOT::R::TRDataFrame fDfSpectators
DataSetInfo & DataInfo() const
Class that contains all the data information. 
Double_t GetWeight() const
return the event weight - depending on whether the flag IgnoreNegWeightsInTraining is or not...
Long64_t GetNTrainingEvents() const
std::vector< std::string > fFactorTrain
UInt_t GetNSpectators(bool all=kTRUE) const
Long64_t GetNTestEvents() const
Float_t GetValue(UInt_t ivar) const
return value of i'th variable 
VariableInfo & GetSpectatorInfo(Int_t i)
RMethodBase(const TString &jobName, Types::EMVA methodType, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="", ROOT::R::TRInterface &_r=ROOT::R::TRInterface::Instance())
Abstract ClassifierFactory template that handles arbitrary types. 
ROOT::R::TRDataFrame fDfTrain
Float_t GetSpectator(UInt_t ivar) const
return spectator content 
const Event * GetEvent() const