| addPoint(std::string histoName, double x) | TMVA::DNN::Settings | inline | 
  | addPoint(std::string histoName, double x, double y) | TMVA::DNN::Settings | inline | 
  | batchSize() const | TMVA::DNN::Settings | inline | 
  | ClassificationSettings(TString name, size_t _convergenceSteps=15, size_t _batchSize=10, size_t _testRepetitions=7, double _factorWeightDecay=1e-5, EnumRegularization _regularization=EnumRegularization::NONE, size_t _scaleToNumEvents=0, MinimizerType _eMinimizerType=MinimizerType::fSteepest, double _learningRate=1e-5, double _momentum=0.3, int _repetitions=3, bool _useMultithreading=true) | TMVA::DNN::ClassificationSettings | inline | 
  | clear(std::string histoName) | TMVA::DNN::Settings | inline | 
  | computeResult(const Net &, std::vector< double > &) | TMVA::DNN::Settings | inlinevirtual | 
  | convergenceCount() const | TMVA::DNN::Settings | inline | 
  | convergenceSteps() const | TMVA::DNN::Settings | inline | 
  | count_dE | TMVA::DNN::Settings |  | 
  | count_E | TMVA::DNN::Settings |  | 
  | count_mb_dE | TMVA::DNN::Settings |  | 
  | count_mb_E | TMVA::DNN::Settings |  | 
  | create(std::string histoName, int bins, double min, double max) | TMVA::DNN::Settings | inline | 
  | create(std::string histoName, int bins, double min, double max, int bins2, double min2, double max2) | TMVA::DNN::Settings | inline | 
  | cycle(double progress, TString text) | TMVA::DNN::Settings | inlinevirtual | 
  | drawSample(const std::vector< double > &, const std::vector< double > &, const std::vector< double > &, double) | TMVA::DNN::Settings | inlinevirtual | 
  | dropFractions() const | TMVA::DNN::Settings | inline | 
  | dropRepetitions() const | TMVA::DNN::Settings | inline | 
  | endTestCycle() | TMVA::DNN::ClassificationSettings | virtual | 
  | endTrainCycle(double) | TMVA::DNN::ClassificationSettings | virtual | 
  | exists(std::string histoName) | TMVA::DNN::Settings | inline | 
  | factorWeightDecay() const | TMVA::DNN::Settings | inline | 
  | fLearningRate | TMVA::DNN::Settings |  | 
  | fMinimizerType | TMVA::DNN::Settings |  | 
  | fMomentum | TMVA::DNN::Settings |  | 
  | fMonitoring | TMVA::DNN::Settings | protected | 
  | fRepetitions | TMVA::DNN::Settings |  | 
  | hasConverged(double testError) | TMVA::DNN::Settings | virtual | 
  | learningRate() const | TMVA::DNN::Settings | inline | 
  | m_ams | TMVA::DNN::ClassificationSettings |  | 
  | m_batchSize | TMVA::DNN::Settings |  | 
  | m_convergenceCount | TMVA::DNN::Settings |  | 
  | m_convergenceSteps | TMVA::DNN::Settings |  | 
  | m_cutValue | TMVA::DNN::ClassificationSettings |  | 
  | m_dropOut | TMVA::DNN::Settings |  | 
  | m_dropRepetitions | TMVA::DNN::Settings |  | 
  | m_factorWeightDecay | TMVA::DNN::Settings |  | 
  | m_fileNameNetConfig | TMVA::DNN::ClassificationSettings |  | 
  | m_fileNameResult | TMVA::DNN::ClassificationSettings |  | 
  | m_input | TMVA::DNN::ClassificationSettings |  | 
  | m_maxConvergenceCount | TMVA::DNN::Settings |  | 
  | m_maxProgress | TMVA::DNN::Settings |  | 
  | m_minError | TMVA::DNN::Settings |  | 
  | m_minProgress | TMVA::DNN::Settings |  | 
  | m_output | TMVA::DNN::ClassificationSettings |  | 
  | m_pResultPatternContainer | TMVA::DNN::ClassificationSettings |  | 
  | m_regularization | TMVA::DNN::Settings |  | 
  | m_scaleToNumEvents | TMVA::DNN::ClassificationSettings |  | 
  | m_significances | TMVA::DNN::ClassificationSettings |  | 
  | m_sumOfBkgWeights | TMVA::DNN::ClassificationSettings |  | 
  | m_sumOfSigWeights | TMVA::DNN::ClassificationSettings |  | 
  | m_targets | TMVA::DNN::ClassificationSettings |  | 
  | m_testRepetitions | TMVA::DNN::Settings |  | 
  | m_timer | TMVA::DNN::Settings |  | 
  | m_useMultithreading | TMVA::DNN::Settings | protected | 
  | m_weights | TMVA::DNN::ClassificationSettings |  | 
  | maxConvergenceCount() const | TMVA::DNN::Settings | inline | 
  | minError() const | TMVA::DNN::Settings | inline | 
  | minimizerType() const | TMVA::DNN::Settings | inline | 
  | momentum() const | TMVA::DNN::Settings | inline | 
  | pads(int numPads) | TMVA::DNN::Settings | inline | 
  | plot(std::string histoName, std::string options, int pad, EColor color) | TMVA::DNN::Settings | inline | 
  | regularization() const | TMVA::DNN::Settings | inline | 
  | repetitions() const | TMVA::DNN::Settings | inline | 
  | setDropOut(Iterator begin, Iterator end, size_t _dropRepetitions) | TMVA::DNN::Settings | inline | 
  | setMonitoring(std::shared_ptr< Monitoring > ptrMonitoring) | TMVA::DNN::Settings | inline | 
  | setProgressLimits(double minProgress=0, double maxProgress=100) | TMVA::DNN::Settings | inlinevirtual | 
  | setResultComputation(std::string _fileNameNetConfig, std::string _fileNameResult, std::vector< Pattern > *_resultPatternContainer) | TMVA::DNN::ClassificationSettings |  | 
  | Settings(TString name, size_t _convergenceSteps=15, size_t _batchSize=10, size_t _testRepetitions=7, double _factorWeightDecay=1e-5, TMVA::DNN::EnumRegularization _regularization=TMVA::DNN::EnumRegularization::NONE, MinimizerType _eMinimizerType=MinimizerType::fSteepest, double _learningRate=1e-5, double _momentum=0.3, int _repetitions=3, bool _multithreading=true) | TMVA::DNN::Settings |  | 
  | setWeightSums(double sumOfSigWeights, double sumOfBkgWeights) | TMVA::DNN::ClassificationSettings |  | 
  | startTestCycle() | TMVA::DNN::ClassificationSettings | virtual | 
  | startTrainCycle() | TMVA::DNN::ClassificationSettings | virtual | 
  | startTraining() | TMVA::DNN::Settings | inlinevirtual | 
  | testIteration() | TMVA::DNN::ClassificationSettings | inlinevirtual | 
  | testRepetitions() const | TMVA::DNN::Settings | inline | 
  | testSample(double error, double output, double target, double weight) | TMVA::DNN::ClassificationSettings | virtual | 
  | useMultithreading() const | TMVA::DNN::Settings | inline | 
  | ~ClassificationSettings() | TMVA::DNN::ClassificationSettings | inlinevirtual | 
  | ~Settings() | TMVA::DNN::Settings | virtual |