ROOT 6.12/07 Reference Guide |
Namespaces | |
Blas | |
Classes | |
class | Batch |
The Batch class encapsulates one mini-batch. More... | |
class | ClassificationSettings |
Settings for classificationused to distinguish between different function signatures. More... | |
class | Layer |
Layer defines the layout of a layer. More... | |
class | LayerData |
LayerData holds the data of one layer. More... | |
class | MeanVariance |
class | Net |
neural net More... | |
class | Settings |
Settings for the training of the neural net. More... | |
class | Steepest |
Steepest Gradient Descent algorithm (SGD) More... | |
class | TBatch |
TBatch. More... | |
class | TBatchIterator |
TBatchIterator. More... | |
class | TCpu |
The TCpu architecture class. More... | |
class | TCpuBuffer |
TCpuBuffer. More... | |
class | TCpuMatrix |
The TCpuMatrix class. More... | |
class | TCuda |
The TCuda architecture class. More... | |
class | TCudaDeviceBuffer |
TCudaDeviceBuffer. More... | |
class | TCudaDeviceReference |
TCudaDeviceReference. More... | |
class | TCudaHostBuffer |
TCudaHostBuffer. More... | |
class | TCudaMatrix |
TCudaMatrix Class. More... | |
class | TDataLoader |
TDataLoader. More... | |
class | TDataLoader< AData, TReference< AReal > > |
class | TDevice |
TDevice. More... | |
class | TGradientDescent |
class | TLayer |
Generic layer class. More... | |
class | TNet |
Generic neural network class. More... | |
class | TReference |
The reference architecture class. More... | |
class | TSharedLayer |
Layer class width shared weight and bias layers. More... | |
Typedefs | |
typedef std::vector< char > | DropContainer |
using | IndexIterator_t = typename std::vector< size_t >::iterator |
using | MatrixInput_t = std::tuple< const TMatrixT< Double_t > &, const TMatrixT< Double_t > &, const TMatrixT< Double_t > & > |
typedef std::tuple< Settings &, Batch &, DropContainer & > | pass_through_type |
using | TMVAInput_t = std::tuple< const std::vector< Event * > &, const DataSetInfo & > |
Functions | |
template<typename Architecture_t > | |
void | addRegularizationGradients (typename Architecture_t::Matrix_t &A, const typename Architecture_t::Matrix_t &W, typename Architecture_t::Scalar_t weightDecay, ERegularization R) |
Add the regularization gradient corresponding to weight matrix W, to the matrix A. More... | |
template<typename ItValue , typename Fnc > | |
void | applyFunctions (ItValue itValue, ItValue itValueEnd, Fnc fnc) |
apply the activation functions More... | |
template<typename ItValue , typename Fnc , typename InvFnc , typename ItGradient > | |
void | applyFunctions (ItValue itValue, ItValue itValueEnd, Fnc fnc, InvFnc invFnc, ItGradient itGradient) |
apply the activation functions and compute the gradient More... | |
template<typename ItValue , typename ItFunction > | |
void | applyFunctions (ItValue itValue, ItValue itValueEnd, ItFunction itFunction) |
template<typename ItValue , typename ItFunction , typename ItInverseFunction , typename ItGradient > | |
void | applyFunctions (ItValue itValue, ItValue itValueEnd, ItFunction itFunction, ItInverseFunction itInverseFunction, ItGradient itGradient) |
template<bool HasDropOut, typename ItSource , typename ItWeight , typename ItTarget , typename ItDrop > | |
void | applyWeights (ItSource itSourceBegin, ItSource itSourceEnd, ItWeight itWeight, ItTarget itTargetBegin, ItTarget itTargetEnd, ItDrop itDrop) |
apply weights using drop-out; for no drop out, provide (&bool = true) to itDrop such that *itDrop becomes "true" More... | |
template<typename ItSource , typename ItWeight , typename ItTarget > | |
void | applyWeights (ItSource itSourceBegin, ItSource itSourceEnd, ItWeight itWeight, ItTarget itTargetBegin, ItTarget itTargetEnd) |
template<bool HasDropOut, typename ItSource , typename ItWeight , typename ItPrev , typename ItDrop > | |
void | applyWeightsBackwards (ItSource itCurrBegin, ItSource itCurrEnd, ItWeight itWeight, ItPrev itPrevBegin, ItPrev itPrevEnd, ItDrop itDrop) |
apply weights backwards (for backprop); for no drop out, provide (&bool = true) to itDrop such that *itDrop becomes "true" More... | |
template<typename ItSource , typename ItWeight , typename ItPrev > | |
void | applyWeightsBackwards (ItSource itCurrBegin, ItSource itCurrEnd, ItWeight itWeight, ItPrev itPrevBegin, ItPrev itPrevEnd) |
template<typename LAYERDATA > | |
void | backward (LAYERDATA &prevLayerData, LAYERDATA &currLayerData) |
backward application of the weights (back-propagation of the error) More... | |
template<EnumRegularization Regularization> | |
double | computeRegularization (double weight, const double &factorWeightDecay) |
compute the regularization (L1, L2) More... | |
template<> | |
double | computeRegularization< EnumRegularization::L1 > (double weight, const double &factorWeightDecay) |
template<> | |
double | computeRegularization< EnumRegularization::L2 > (double weight, const double &factorWeightDecay) |
template<typename ItProbability , typename ItTruth , typename ItDelta , typename ItInvActFnc > | |
double | crossEntropy (ItProbability itProbabilityBegin, ItProbability itProbabilityEnd, ItTruth itTruthBegin, ItTruth, ItDelta itDelta, ItDelta itDeltaEnd, ItInvActFnc, double patternWeight) |
cross entropy error function More... | |
void | cudaError (cudaError_t code, const char *file, int line, bool abort=true) |
Function to check cuda return code. More... | |
template<typename Architecture_t > | |
void | evaluate (typename Architecture_t::Matrix_t &A, EActivationFunction f) |
Apply the given activation function to each value in the given matrix A. More... | |
template<typename Architecture_t > | |
void | evaluate (typename Architecture_t::Matrix_t &A, EOutputFunction f, const typename Architecture_t::Matrix_t &X) |
Apply the given output function to each value in the given matrix A. More... | |
template<typename Architecture_t > | |
auto | evaluate (ELossFunction f, const typename Architecture_t::Matrix_t &Y, const typename Architecture_t::Matrix_t &output, const typename Architecture_t::Matrix_t &weights) -> decltype(Architecture_t::CrossEntropy(Y, output, weights)) |
Compute the value of the objective function f for given activations of the ouput layer and the truth Y. More... | |
template<typename Architecture_t > | |
void | evaluateDerivative (typename Architecture_t::Matrix_t &B, EActivationFunction f, const typename Architecture_t::Matrix_t &A) |
Compute the first partial derivative of the activation function for the values given in matrix A and write the results into B. More... | |
template<typename Architecture_t > | |
void | evaluateGradients (typename Architecture_t::Matrix_t &dY, ELossFunction f, const typename Architecture_t::Matrix_t &Y, const typename Architecture_t::Matrix_t &output, const typename Architecture_t::Matrix_t &weights) |
Compute the gradient of the given output function f for given activations output of the output layer and truth Y and write the results into dY. More... | |
template<typename LAYERDATA > | |
void | forward (const LAYERDATA &prevLayerData, LAYERDATA &currLayerData) |
apply the weights (and functions) in forward direction of the DNN More... | |
double | gaussDouble (double mean, double sigma) |
template<typename Architecture_t > | |
void | initialize (typename Architecture_t::Matrix_t &A, EInitialization m) |
template<typename T > | |
bool | isFlagSet (T flag, T value) |
ModeOutputValues | operator & (ModeOutputValues lhs, ModeOutputValues rhs) |
ModeOutputValues | operator &= (ModeOutputValues &lhs, ModeOutputValues rhs) |
ModeOutputValues | operator| (ModeOutputValues lhs, ModeOutputValues rhs) |
ModeOutputValues | operator|= (ModeOutputValues &lhs, ModeOutputValues rhs) |
int | randomInt (int maxValue) |
template<typename Architecture_t > | |
auto | regularization (const typename Architecture_t::Matrix_t &A, ERegularization R) -> decltype(Architecture_t::L1Regularization(A)) |
Evaluate the regularization functional for a given weight matrix. More... | |
template<typename ItOutput , typename ItTruth , typename ItDelta , typename ItInvActFnc > | |
double | softMaxCrossEntropy (ItOutput itProbabilityBegin, ItOutput itProbabilityEnd, ItTruth itTruthBegin, ItTruth, ItDelta itDelta, ItDelta itDeltaEnd, ItInvActFnc, double patternWeight) |
soft-max-cross-entropy error function (for mutual exclusive cross-entropy) More... | |
double | studenttDouble (double distributionParameter) |
template<typename ItOutput , typename ItTruth , typename ItDelta , typename InvFnc > | |
double | sumOfSquares (ItOutput itOutputBegin, ItOutput itOutputEnd, ItTruth itTruthBegin, ItTruth, ItDelta itDelta, ItDelta itDeltaEnd, InvFnc invFnc, double patternWeight) |
sum of squares error function More... | |
template<typename ItOutput , typename ItTruth , typename ItDelta , typename ItInvActFnc > | |
double | sumOfSquares (ItOutput itOutputBegin, ItOutput itOutputEnd, ItTruth itTruthBegin, ItTruth itTruthEnd, ItDelta itDelta, ItDelta itDeltaEnd, ItInvActFnc itInvActFnc, double patternWeight) |
template<typename Container , typename T > | |
void | uniformDouble (Container &container, T maxValue) |
double | uniformDouble (double minValue, double maxValue) |
template<typename T > | |
T | uniformFromTo (T from, T to) |
template<typename ItSource , typename ItDelta , typename ItTargetGradient , typename ItGradient > | |
void | update (ItSource itSource, ItSource itSourceEnd, ItDelta itTargetDeltaBegin, ItDelta itTargetDeltaEnd, ItTargetGradient itTargetGradientBegin, ItGradient itGradient) |
update the gradients More... | |
template<EnumRegularization Regularization, typename ItSource , typename ItDelta , typename ItTargetGradient , typename ItGradient , typename ItWeight > | |
void | update (ItSource itSource, ItSource itSourceEnd, ItDelta itTargetDeltaBegin, ItDelta itTargetDeltaEnd, ItTargetGradient itTargetGradientBegin, ItGradient itGradient, ItWeight itWeight, double weightDecay) |
update the gradients, using regularization More... | |
template<typename LAYERDATA > | |
void | update (const LAYERDATA &prevLayerData, LAYERDATA &currLayerData, double factorWeightDecay, EnumRegularization regularization) |
update the node values More... | |
template<typename ItWeight > | |
double | weightDecay (double error, ItWeight itWeight, ItWeight itWeightEnd, double factorWeightDecay, EnumRegularization eRegularization) |
compute the weight decay for regularization (L1 or L2) More... | |
Variables | |
static std::shared_ptr< std::function< double(double)> > | Gauss = std::make_shared<std::function<double(double)>> ([](double value){ const double s = 6.0; return exp (-std::pow(value*s,2.0)); }) |
static std::shared_ptr< std::function< double(double)> > | GaussComplement = std::make_shared<std::function<double(double)>> ([](double value){ const double s = 6.0; return 1.0 - exp (-std::pow(value*s,2.0)); }) |
static std::shared_ptr< std::function< double(double)> > | InvGauss = std::make_shared<std::function<double(double)>> ([](double value){ const double s = 6.0; return -2.0 * value * s*s * (*Gauss.get ()) (value); }) |
static std::shared_ptr< std::function< double(double)> > | InvGaussComplement = std::make_shared<std::function<double(double)>> ([](double value){ const double s = 6.0; return +2.0 * value * s*s * (*GaussComplement.get ()) (value); }) |
static std::shared_ptr< std::function< double(double)> > | InvLinear = std::make_shared<std::function<double(double)>> ([](double ){ return 1.0; }) |
static std::shared_ptr< std::function< double(double)> > | InvReLU = std::make_shared<std::function<double(double)>> ([](double value){ const double margin = 0.0; return value > margin ? 1.0 : 0; }) |
static std::shared_ptr< std::function< double(double)> > | InvSigmoid = std::make_shared<std::function<double(double)>> ([](double value){ double s = (*Sigmoid.get ()) (value); return s*(1.0-s); }) |
static std::shared_ptr< std::function< double(double)> > | InvSoftPlus = std::make_shared<std::function<double(double)>> ([](double value){ return 1.0 / (1.0 + std::exp (-value)); }) |
static std::shared_ptr< std::function< double(double)> > | InvSoftSign = std::make_shared<std::function<double(double)>> ([](double value){ return std::pow ((1.0 - fabs (value)),2.0); }) |
static std::shared_ptr< std::function< double(double)> > | InvSymmReLU = std::make_shared<std::function<double(double)>> ([](double value){ const double margin = 0.3; return value > margin ? 1.0 : value < -margin ? 1.0 : 0; }) |
static std::shared_ptr< std::function< double(double)> > | InvTanh = std::make_shared<std::function<double(double)>> ([](double value){ return 1.0 - std::pow (value, 2.0); }) |
static std::shared_ptr< std::function< double(double)> > | InvTanhShift = std::make_shared<std::function<double(double)>> ([](double value){ return 0.3 + (1.0 - std::pow (value, 2.0)); }) |
static std::shared_ptr< std::function< double(double)> > | Linear = std::make_shared<std::function<double(double)>> ([](double value){ return value; }) |
static std::shared_ptr< std::function< double(double)> > | ReLU = std::make_shared<std::function<double(double)>> ([](double value){ const double margin = 0.0; return value > margin ? value-margin : 0; }) |
static std::shared_ptr< std::function< double(double)> > | Sigmoid = std::make_shared<std::function<double(double)>> ([](double value){ value = std::max (-100.0, std::min (100.0,value)); return 1.0/(1.0 + std::exp (-value)); }) |
static std::shared_ptr< std::function< double(double)> > | SoftPlus = std::make_shared<std::function<double(double)>> ([](double value){ return std::log (1.0+ std::exp (value)); }) |
static std::shared_ptr< std::function< double(double)> > | SoftSign = std::make_shared<std::function<double(double)>> ([](double value){ return value / (1.0 + fabs (value)); }) |
static std::shared_ptr< std::function< double(double)> > | SymmReLU = std::make_shared<std::function<double(double)>> ([](double value){ const double margin = 0.3; return value > margin ? value-margin : value < -margin ? value+margin : 0; }) |
static std::shared_ptr< std::function< double(double)> > | Tanh = std::make_shared<std::function<double(double)>> ([](double value){ return tanh (value); }) |
static std::shared_ptr< std::function< double(double)> > | TanhShift = std::make_shared<std::function<double(double)>> ([](double value){ return tanh (value-0.3); }) |
static std::shared_ptr< std::function< double(double)> > | ZeroFnc = std::make_shared<std::function<double(double)>> ([](double ){ return 0; }) |
typedef std::vector<char> TMVA::DNN::DropContainer |
Definition at line 220 of file NeuralNet.h.
using TMVA::DNN::IndexIterator_t = typedef typename std::vector<size_t>::iterator |
Definition at line 42 of file DataLoader.h.
using TMVA::DNN::MatrixInput_t = typedef std::tuple<const TMatrixT<Double_t> &, const TMatrixT<Double_t> &, const TMatrixT<Double_t> &> |
Definition at line 38 of file DataLoader.h.
typedef std::tuple<Settings&, Batch&, DropContainer&> TMVA::DNN::pass_through_type |
Definition at line 1301 of file NeuralNet.h.
using TMVA::DNN::TMVAInput_t = typedef std::tuple<const std::vector<Event *> &, const DataSetInfo &> |
Definition at line 40 of file DataLoader.h.
|
strong |
Enum that represents layer activation functions.
Enumerator | |
---|---|
kIdentity | |
kRelu | |
kSigmoid | |
kTanh | |
kSymmRelu | |
kSoftSign | |
kGauss |
Definition at line 31 of file Functions.h.
|
strong |
Enumerator | |
---|---|
kGauss | |
kUniform | |
kIdentity | |
kZero |
Definition at line 70 of file Functions.h.
|
strong |
Enum that represents objective functions for the net, i.e.
functions that take the output from the last layer in the net together with the truths and return the objective function values that is to be minimized in the training process.
Enumerator | |
---|---|
kCrossEntropy | |
kMeanSquaredError | |
kSoftmaxCrossEntropy |
Definition at line 54 of file Functions.h.
|
strong |
Enumerator | |
---|---|
ZERO | |
LINEAR | |
TANH | |
RELU | |
SYMMRELU | |
TANHSHIFT | |
SIGMOID | |
SOFTSIGN | |
GAUSS | |
GAUSSCOMPLEMENT |
Definition at line 157 of file NeuralNet.h.
|
strong |
Enumerator | |
---|---|
NONE | |
L1 | |
L2 | |
L1MAX |
Definition at line 173 of file NeuralNet.h.
|
strong |
Enum that represents output functions.
Enumerator | |
---|---|
kIdentity | |
kSigmoid | |
kSoftmax |
Definition at line 43 of file Functions.h.
|
strong |
Enum representing the regularization type applied for a given layer.
Enumerator | |
---|---|
kNone | |
kL1 | |
kL2 |
Definition at line 62 of file Functions.h.
enum TMVA::DNN::MinimizerType |
|
strong |
error functions to be chosen from
Enumerator | |
---|---|
SUMOFSQUARES | |
CROSSENTROPY | |
CROSSENTROPY_MUTUALEXCLUSIVE |
Definition at line 1045 of file NeuralNet.h.
|
strong |
Enumerator | |
---|---|
FETCH |
Definition at line 1036 of file NeuralNet.h.
|
strong |
Enumerator | |
---|---|
DIRECT | |
SIGMOID | |
SOFTMAX | |
BATCHNORMALIZATION |
Definition at line 179 of file NeuralNet.h.
|
strong |
weight initialization strategies to be chosen from
Enumerator | |
---|---|
XAVIER | |
TEST | |
LAYERSIZE | |
XAVIERUNIFORM |
Definition at line 1056 of file NeuralNet.h.
|
inline |
Add the regularization gradient corresponding to weight matrix W, to the matrix A.
Definition at line 225 of file Functions.h.
void TMVA::DNN::applyFunctions | ( | ItValue | itValue, |
ItValue | itValueEnd, | ||
Fnc | fnc | ||
) |
apply the activation functions
Definition at line 146 of file NeuralNet.icc.
void TMVA::DNN::applyFunctions | ( | ItValue | itValue, |
ItValue | itValueEnd, | ||
Fnc | fnc, | ||
InvFnc | invFnc, | ||
ItGradient | itGradient | ||
) |
apply the activation functions and compute the gradient
Definition at line 163 of file NeuralNet.icc.
void TMVA::DNN::applyFunctions | ( | ItValue | itValue, |
ItValue | itValueEnd, | ||
ItFunction | itFunction | ||
) |
void TMVA::DNN::applyFunctions | ( | ItValue | itValue, |
ItValue | itValueEnd, | ||
ItFunction | itFunction, | ||
ItInverseFunction | itInverseFunction, | ||
ItGradient | itGradient | ||
) |
void TMVA::DNN::applyWeights | ( | ItSource | itSourceBegin, |
ItSource | itSourceEnd, | ||
ItWeight | itWeight, | ||
ItTarget | itTargetBegin, | ||
ItTarget | itTargetEnd, | ||
ItDrop | itDrop | ||
) |
apply weights using drop-out; for no drop out, provide (&bool = true) to itDrop such that *itDrop becomes "true"
itDrop correlates with itSourceBegin
Definition at line 90 of file NeuralNet.icc.
void TMVA::DNN::applyWeights | ( | ItSource | itSourceBegin, |
ItSource | itSourceEnd, | ||
ItWeight | itWeight, | ||
ItTarget | itTargetBegin, | ||
ItTarget | itTargetEnd | ||
) |
void TMVA::DNN::applyWeightsBackwards | ( | ItSource | itCurrBegin, |
ItSource | itCurrEnd, | ||
ItWeight | itWeight, | ||
ItPrev | itPrevBegin, | ||
ItPrev | itPrevEnd, | ||
ItDrop | itDrop | ||
) |
apply weights backwards (for backprop); for no drop out, provide (&bool = true) to itDrop such that *itDrop becomes "true"
itDrop correlates with itPrev (to be in agreement with "applyWeights" where it correlates with itSources (same node as itTarget here in applyBackwards)
Definition at line 117 of file NeuralNet.icc.
void TMVA::DNN::applyWeightsBackwards | ( | ItSource | itCurrBegin, |
ItSource | itCurrEnd, | ||
ItWeight | itWeight, | ||
ItPrev | itPrevBegin, | ||
ItPrev | itPrevEnd | ||
) |
void TMVA::DNN::backward | ( | LAYERDATA & | prevLayerData, |
LAYERDATA & | currLayerData | ||
) |
backward application of the weights (back-propagation of the error)
Definition at line 571 of file NeuralNet.icc.
|
inline |
compute the regularization (L1, L2)
Definition at line 208 of file NeuralNet.icc.
|
inline |
Definition at line 218 of file NeuralNet.icc.
|
inline |
Definition at line 225 of file NeuralNet.icc.
double TMVA::DNN::crossEntropy | ( | ItProbability | itProbabilityBegin, |
ItProbability | itProbabilityEnd, | ||
ItTruth | itTruthBegin, | ||
ItTruth | , | ||
ItDelta | itDelta, | ||
ItDelta | itDeltaEnd, | ||
ItInvActFnc | , | ||
double | patternWeight | ||
) |
cross entropy error function
Definition at line 411 of file NeuralNet.icc.
|
inline |
Function to check cuda return code.
Taken from http://stackoverflow.com/questions/14038589/
Definition at line 177 of file CudaMatrix.h.
|
inline |
Apply the given activation function to each value in the given matrix A.
Definition at line 85 of file Functions.h.
|
inline |
Apply the given output function to each value in the given matrix A.
Definition at line 142 of file Functions.h.
|
inline |
Compute the value of the objective function f for given activations of the ouput layer and the truth Y.
Definition at line 165 of file Functions.h.
|
inline |
Compute the first partial derivative of the activation function for the values given in matrix A and write the results into B.
Definition at line 111 of file Functions.h.
|
inline |
Compute the gradient of the given output function f for given activations output of the output layer and truth Y and write the results into dY.
Definition at line 182 of file Functions.h.
void TMVA::DNN::forward | ( | const LAYERDATA & | prevLayerData, |
LAYERDATA & | currLayerData | ||
) |
apply the weights (and functions) in forward direction of the DNN
Definition at line 545 of file NeuralNet.icc.
double TMVA::DNN::gaussDouble | ( | double | mean, |
double | sigma | ||
) |
Definition at line 14 of file NeuralNet.cxx.
|
inline |
Definition at line 249 of file Functions.h.
bool TMVA::DNN::isFlagSet | ( | T | flag, |
T | value | ||
) |
Definition at line 213 of file NeuralNet.h.
|
inline |
Definition at line 200 of file NeuralNet.h.
|
inline |
Definition at line 205 of file NeuralNet.h.
|
inline |
Definition at line 189 of file NeuralNet.h.
|
inline |
Definition at line 194 of file NeuralNet.h.
int TMVA::DNN::randomInt | ( | int | maxValue | ) |
Definition at line 31 of file NeuralNet.cxx.
|
inline |
Evaluate the regularization functional for a given weight matrix.
Definition at line 205 of file Functions.h.
double TMVA::DNN::softMaxCrossEntropy | ( | ItOutput | itProbabilityBegin, |
ItOutput | itProbabilityEnd, | ||
ItTruth | itTruthBegin, | ||
ItTruth | , | ||
ItDelta | itDelta, | ||
ItDelta | itDeltaEnd, | ||
ItInvActFnc | , | ||
double | patternWeight | ||
) |
soft-max-cross-entropy error function (for mutual exclusive cross-entropy)
Definition at line 457 of file NeuralNet.icc.
double TMVA::DNN::studenttDouble | ( | double | distributionParameter | ) |
Definition at line 39 of file NeuralNet.cxx.
double TMVA::DNN::sumOfSquares | ( | ItOutput | itOutputBegin, |
ItOutput | itOutputEnd, | ||
ItTruth | itTruthBegin, | ||
ItTruth | , | ||
ItDelta | itDelta, | ||
ItDelta | itDeltaEnd, | ||
InvFnc | invFnc, | ||
double | patternWeight | ||
) |
sum of squares error function
Definition at line 381 of file NeuralNet.icc.
double TMVA::DNN::sumOfSquares | ( | ItOutput | itOutputBegin, |
ItOutput | itOutputEnd, | ||
ItTruth | itTruthBegin, | ||
ItTruth | itTruthEnd, | ||
ItDelta | itDelta, | ||
ItDelta | itDeltaEnd, | ||
ItInvActFnc | itInvActFnc, | ||
double | patternWeight | ||
) |
void TMVA::DNN::uniformDouble | ( | Container & | container, |
T | maxValue | ||
) |
Definition at line 40 of file NeuralNet.icc.
double TMVA::DNN::uniformDouble | ( | double | minValue, |
double | maxValue | ||
) |
Definition at line 22 of file NeuralNet.cxx.
T TMVA::DNN::uniformFromTo | ( | T | from, |
T | to | ||
) |
Definition at line 32 of file NeuralNet.icc.
void TMVA::DNN::update | ( | ItSource | itSource, |
ItSource | itSourceEnd, | ||
ItDelta | itTargetDeltaBegin, | ||
ItDelta | itTargetDeltaEnd, | ||
ItTargetGradient | itTargetGradientBegin, | ||
ItGradient | itGradient | ||
) |
update the gradients
Definition at line 182 of file NeuralNet.icc.
void TMVA::DNN::update | ( | ItSource | itSource, |
ItSource | itSourceEnd, | ||
ItDelta | itTargetDeltaBegin, | ||
ItDelta | itTargetDeltaEnd, | ||
ItTargetGradient | itTargetGradientBegin, | ||
ItGradient | itGradient, | ||
ItWeight | itWeight, | ||
double | weightDecay | ||
) |
update the gradients, using regularization
Definition at line 236 of file NeuralNet.icc.
void TMVA::DNN::update | ( | const LAYERDATA & | prevLayerData, |
LAYERDATA & | currLayerData, | ||
double | factorWeightDecay, | ||
EnumRegularization | regularization | ||
) |
update the node values
Definition at line 599 of file NeuralNet.icc.
double TMVA::DNN::weightDecay | ( | double | error, |
ItWeight | itWeight, | ||
ItWeight | itWeightEnd, | ||
double | factorWeightDecay, | ||
EnumRegularization | eRegularization | ||
) |
compute the weight decay for regularization (L1 or L2)
Definition at line 497 of file NeuralNet.icc.
|
static |
Definition at line 77 of file NeuralNet.icc.
|
static |
Definition at line 80 of file NeuralNet.icc.
|
static |
Definition at line 78 of file NeuralNet.icc.
|
static |
Definition at line 81 of file NeuralNet.icc.
|
static |
Definition at line 60 of file NeuralNet.icc.
|
static |
Definition at line 66 of file NeuralNet.icc.
|
static |
Definition at line 54 of file NeuralNet.icc.
|
static |
Definition at line 69 of file NeuralNet.icc.
|
static |
Definition at line 75 of file NeuralNet.icc.
|
static |
Definition at line 63 of file NeuralNet.icc.
|
static |
Definition at line 57 of file NeuralNet.icc.
|
static |
Definition at line 72 of file NeuralNet.icc.
|
static |
Definition at line 59 of file NeuralNet.icc.
|
static |
Definition at line 65 of file NeuralNet.icc.
|
static |
Definition at line 53 of file NeuralNet.icc.
|
static |
Definition at line 68 of file NeuralNet.icc.
|
static |
Definition at line 74 of file NeuralNet.icc.
|
static |
Definition at line 62 of file NeuralNet.icc.
|
static |
Definition at line 56 of file NeuralNet.icc.
|
static |
Definition at line 71 of file NeuralNet.icc.
|
static |
Definition at line 50 of file NeuralNet.icc.