Logo ROOT   6.12/07
Reference Guide
fitLinear2.C
Go to the documentation of this file.
1 /// \file
2 /// \ingroup tutorial_fit
3 /// \notebook -nodraw
4 /// Fit a 5d hyperplane by n points, using the linear fitter directly
5 ///
6 /// This macro shows some features of the TLinearFitter class
7 /// A 5-d hyperplane is fit, a constant term is assumed in the hyperplane
8 /// equation `(y = a0 + a1*x0 + a2*x1 + a3*x2 + a4*x3 + a5*x4)`
9 ///
10 /// \macro_output
11 /// \macro_code
12 ///
13 /// \author Anna Kreshuk
14 
15 #include "TLinearFitter.h"
16 #include "TF1.h"
17 #include "TRandom.h"
18 
19 void fitLinear2()
20 {
21  Int_t n=100;
22  Int_t i;
23  TRandom randNum;
24  TLinearFitter *lf=new TLinearFitter(5);
25 
26  //The predefined "hypN" functions are the fastest to fit
27  lf->SetFormula("hyp5");
28 
29  Double_t *x=new Double_t[n*10*5];
30  Double_t *y=new Double_t[n*10];
31  Double_t *e=new Double_t[n*10];
32 
33  //Create the points and put them into the fitter
34  for (i=0; i<n; i++){
35  x[0 + i*5] = randNum.Uniform(-10, 10);
36  x[1 + i*5] = randNum.Uniform(-10, 10);
37  x[2 + i*5] = randNum.Uniform(-10, 10);
38  x[3 + i*5] = randNum.Uniform(-10, 10);
39  x[4 + i*5] = randNum.Uniform(-10, 10);
40  e[i] = 0.01;
41  y[i] = 4*x[0+i*5] + x[1+i*5] + 2*x[2+i*5] + 3*x[3+i*5] + 0.2*x[4+i*5] + randNum.Gaus()*e[i];
42  }
43 
44  //To avoid copying the data into the fitter, the following function can be used:
45  lf->AssignData(n, 5, x, y, e);
46  //A different way to put the points into the fitter would be to use
47  //the AddPoint function for each point. This way the points are copied and stored
48  //inside the fitter
49 
50  //Perform the fitting and look at the results
51  lf->Eval();
52  TVectorD params;
53  TVectorD errors;
54  lf->GetParameters(params);
55  lf->GetErrors(errors);
56  for (Int_t i=0; i<6; i++)
57  printf("par[%d]=%f+-%f\n", i, params(i), errors(i));
58  Double_t chisquare=lf->GetChisquare();
59  printf("chisquare=%f\n", chisquare);
60 
61 
62  //Now suppose you want to add some more points and see if the parameters will change
63  for (i=n; i<n*2; i++) {
64  x[0+i*5] = randNum.Uniform(-10, 10);
65  x[1+i*5] = randNum.Uniform(-10, 10);
66  x[2+i*5] = randNum.Uniform(-10, 10);
67  x[3+i*5] = randNum.Uniform(-10, 10);
68  x[4+i*5] = randNum.Uniform(-10, 10);
69  e[i] = 0.01;
70  y[i] = 4*x[0+i*5] + x[1+i*5] + 2*x[2+i*5] + 3*x[3+i*5] + 0.2*x[4+i*5] + randNum.Gaus()*e[i];
71  }
72 
73  //Assign the data the same way as before
74  lf->AssignData(n*2, 5, x, y, e);
75  lf->Eval();
76  lf->GetParameters(params);
77  lf->GetErrors(errors);
78  printf("\nMore Points:\n");
79  for (Int_t i=0; i<6; i++)
80  printf("par[%d]=%f+-%f\n", i, params(i), errors(i));
81  chisquare=lf->GetChisquare();
82  printf("chisquare=%.15f\n", chisquare);
83 
84 
85  //Suppose, you are not satisfied with the result and want to try a different formula
86  //Without a constant:
87  //Since the AssignData() function was used, you don't have to add all points to the fitter again
88  lf->SetFormula("x0++x1++x2++x3++x4");
89 
90  lf->Eval();
91  lf->GetParameters(params);
92  lf->GetErrors(errors);
93  printf("\nWithout Constant\n");
94  for (Int_t i=0; i<5; i++)
95  printf("par[%d]=%f+-%f\n", i, params(i), errors(i));
96  chisquare=lf->GetChisquare();
97  printf("chisquare=%f\n", chisquare);
98 
99  //Now suppose that you want to fix the value of one of the parameters
100  //Let's fix the first parameter at 4:
101  lf->SetFormula("hyp5");
102  lf->FixParameter(1, 4);
103  lf->Eval();
104  lf->GetParameters(params);
105  lf->GetErrors(errors);
106  printf("\nFixed Constant:\n");
107  for (i=0; i<6; i++)
108  printf("par[%d]=%f+-%f\n", i, params(i), errors(i));
109  chisquare=lf->GetChisquare();
110  printf("chisquare=%.15f\n", chisquare);
111 
112  //The fixed parameters can then be released by the ReleaseParameter method
113  delete lf;
114 
115 }
116 
virtual void GetErrors(TVectorD &vpar)
Returns parameter errors.
virtual void FixParameter(Int_t ipar)
Fixes paramter #ipar at its current value.
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Definition: TRandom.cxx:256
The Linear Fitter - For fitting functions that are LINEAR IN PARAMETERS.
TVectorT.
Definition: TMatrixTBase.h:77
int Int_t
Definition: RtypesCore.h:41
Double_t x[n]
Definition: legend1.C:17
This is the base class for the ROOT Random number generators.
Definition: TRandom.h:27
virtual Double_t GetChisquare()
Get the Chisquare.
virtual Int_t Eval()
Perform the fit and evaluate the parameters Returns 0 if the fit is ok, 1 if there are errors...
double Double_t
Definition: RtypesCore.h:55
virtual void GetParameters(TVectorD &vpar)
Returns parameter values.
Double_t y[n]
Definition: legend1.C:17
you should not use this method at all Int_t Int_t Double_t Double_t Double_t e
Definition: TRolke.cxx:630
virtual void AssignData(Int_t npoints, Int_t xncols, Double_t *x, Double_t *y, Double_t *e=0)
This function is to use when you already have all the data in arrays and don&#39;t want to copy them into...
virtual void SetFormula(const char *formula)
Additive parts should be separated by "++".
virtual Double_t Uniform(Double_t x1=1)
Returns a uniform deviate on the interval (0, x1).
Definition: TRandom.cxx:627
const Int_t n
Definition: legend1.C:16