Logo ROOT   6.12/07
Reference Guide
rf202_extendedmlfit.C
Go to the documentation of this file.
1 /// \file
2 /// \ingroup tutorial_roofit
3 /// \notebook -js
4 /// 'ADDITION AND CONVOLUTION' RooFit tutorial macro #202
5 ///
6 /// Setting up an extended maximum likelihood fit
7 ///
8 /// \macro_image
9 /// \macro_output
10 /// \macro_code
11 /// \author 07/2008 - Wouter Verkerke
12 
13 #include "RooRealVar.h"
14 #include "RooDataSet.h"
15 #include "RooGaussian.h"
16 #include "RooChebychev.h"
17 #include "RooAddPdf.h"
18 #include "RooExtendPdf.h"
19 #include "TCanvas.h"
20 #include "TAxis.h"
21 #include "RooPlot.h"
22 using namespace RooFit ;
23 
24 
25 void rf202_extendedmlfit()
26 {
27 
28  // S e t u p c o m p o n e n t p d f s
29  // ---------------------------------------
30 
31  // Declare observable x
32  RooRealVar x("x","x",0,10) ;
33 
34  // Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters
35  RooRealVar mean("mean","mean of gaussians",5) ;
36  RooRealVar sigma1("sigma1","width of gaussians",0.5) ;
37  RooRealVar sigma2("sigma2","width of gaussians",1) ;
38 
39  RooGaussian sig1("sig1","Signal component 1",x,mean,sigma1) ;
40  RooGaussian sig2("sig2","Signal component 2",x,mean,sigma2) ;
41 
42  // Build Chebychev polynomial p.d.f.
43  RooRealVar a0("a0","a0",0.5,0.,1.) ;
44  RooRealVar a1("a1","a1",0.2,0.,1.) ;
45  RooChebychev bkg("bkg","Background",x,RooArgSet(a0,a1)) ;
46 
47  // Sum the signal components into a composite signal p.d.f.
48  RooRealVar sig1frac("sig1frac","fraction of component 1 in signal",0.8,0.,1.) ;
49  RooAddPdf sig("sig","Signal",RooArgList(sig1,sig2),sig1frac) ;
50 
51  //----------------
52  // M E T H O D 1
53  //================
54 
55 
56  // C o n s t r u c t e x t e n d e d c o m p o s i t e m o d e l
57  // -------------------------------------------------------------------
58 
59  // Sum the composite signal and background into an extended pdf nsig*sig+nbkg*bkg
60  RooRealVar nsig("nsig","number of signal events",500,0.,10000) ;
61  RooRealVar nbkg("nbkg","number of background events",500,0,10000) ;
62  RooAddPdf model("model","(g1+g2)+a",RooArgList(bkg,sig),RooArgList(nbkg,nsig)) ;
63 
64 
65 
66  // S a m p l e , f i t a n d p l o t e x t e n d e d m o d e l
67  // ---------------------------------------------------------------------
68 
69  // Generate a data sample of expected number events in x from model
70  // = model.expectedEvents() = nsig+nbkg
71  RooDataSet *data = model.generate(x) ;
72 
73  // Fit model to data, extended ML term automatically included
74  model.fitTo(*data) ;
75 
76  // Plot data and PDF overlaid, use expected number of events for p.d.f projection normalization
77  // rather than observed number of events (==data->numEntries())
78  RooPlot* xframe = x.frame(Title("extended ML fit example")) ;
79  data->plotOn(xframe) ;
81 
82  // Overlay the background component of model with a dashed line
84 
85  // Overlay the background+sig2 components of model with a dotted line
87 
88  // Print structure of composite p.d.f.
89  model.Print("t") ;
90 
91 
92  //----------------
93  // M E T H O D 2
94  //================
95 
96  // C o n s t r u c t e x t e n d e d c o m p o n e n t s f i r s t
97  // ---------------------------------------------------------------------
98 
99  // Associated nsig/nbkg as expected number of events with sig/bkg
100  RooExtendPdf esig("esig","extended signal p.d.f",sig,nsig) ;
101  RooExtendPdf ebkg("ebkg","extended background p.d.f",bkg,nbkg) ;
102 
103 
104  // S u m e x t e n d e d c o m p o n e n t s w i t h o u t c o e f s
105  // -------------------------------------------------------------------------
106 
107  // Construct sum of two extended p.d.f. (no coefficients required)
108  RooAddPdf model2("model2","(g1+g2)+a",RooArgList(ebkg,esig)) ;
109 
110 
111 
112  // Draw the frame on the canvas
113  new TCanvas("rf202_composite","rf202_composite",600,600) ;
114  gPad->SetLeftMargin(0.15) ; xframe->GetYaxis()->SetTitleOffset(1.4) ; xframe->Draw() ;
115 
116 
117 }
virtual void SetTitleOffset(Float_t offset=1)
Set distance between the axis and the axis title Offset is a correction factor with respect to the "s...
Definition: TAttAxis.cxx:294
RooAddPdf is an efficient implementation of a sum of PDFs of the form.
Definition: RooAddPdf.h:29
TAxis * GetYaxis() const
Definition: RooPlot.cxx:1118
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1=RooCmdArg::none(), const RooCmdArg &arg2=RooCmdArg::none(), const RooCmdArg &arg3=RooCmdArg::none(), const RooCmdArg &arg4=RooCmdArg::none(), const RooCmdArg &arg5=RooCmdArg::none(), const RooCmdArg &arg6=RooCmdArg::none(), const RooCmdArg &arg7=RooCmdArg::none(), const RooCmdArg &arg8=RooCmdArg::none()) const
Plot dataset on specified frame.
Definition: RooAbsData.cxx:568
RooCmdArg Title(const char *name)
Double_t x[n]
Definition: legend1.C:17
RooCmdArg LineStyle(Style_t style)
Plain Gaussian p.d.f.
Definition: RooGaussian.h:25
RooRealVar represents a fundamental (non-derived) real valued object.
Definition: RooRealVar.h:36
RooDataSet is a container class to hold unbinned data.
Definition: RooDataSet.h:29
A RooPlot is a plot frame and a container for graphics objects within that frame. ...
Definition: RooPlot.h:41
The Canvas class.
Definition: TCanvas.h:31
RooCmdArg Components(const RooArgSet &compSet)
RooCmdArg Normalization(Double_t scaleFactor)
#define gPad
Definition: TVirtualPad.h:285
Chebychev polynomial p.d.f.
Definition: RooChebychev.h:25
virtual void Draw(Option_t *options=0)
Draw this plot and all of the elements it contains.
Definition: RooPlot.cxx:559